Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

A series of Benzothiazole based Schiff bases for colorimetric sensing of fluoride and acetate ions: acetate induced "turn-on" fluorescence for selectivity

Nilotpal Borah, Sagnik De, Abhijit Gogoi, Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India Fax: +91-361-2582349; Tel: +91-361-2582313;

E-mail: gdas@iitg.ac.in

The chemosensors L_1 and L_3 were synthesized and reported from our group earlier and hence similar synthetic and characterization procedure were followed. In case of L_1 , the solvent for ¹H NMR has been altered from CDCl₃ in earlier case to DMSO-d₆ for better solubility.

L₁, ¹H NMR (600 MHz, DMSO-d₆, SiMe₄) δ(ppm): 12.19 (bs, 1H, hydrazone –NH), 9.19 (s, 1H, imine – CH), 8.66-8.65 (d, 1H, Ar_H), 7.91-7.87 (t, 2H, Ar_H), 7.72-7.75 (m, 1H, Ar_H), 7.60-7.57 (t, 1H, Ar_H), 7.42-7.39 (t, 1H, Ar_H), 7.32-7.29 (t, 2H, Ar_H), 7.25-7.24 (d, 1H, Ar_H), 7.12-7.10 (t, 1H, Ar_H).

Figure S1. ¹H NMR of L₁ in DMSO at 298 K.-

Figure S2. ESI-Mass spectrum of receptor L_1 in acetonitrile (negative mode).

Figure S3. Expanded ¹H NMR of L_2 in DMSO-d₆ at room temperature.

Figure S5. ESI-Mass spectrum of receptor L_2 in acetonitrile (negative mode).

Figure S7. ESI-Mass spectrum of receptor L_3 in acetonitrile (positive mode).

Figure S8. a) Job's plot for determining the stoichiometry of the probe L_1 and F^- ion and (b) The corresponding Benesi-Hildebrand plot for binding constant determination. (c) Absorbance intensity at 456 nm versus F^- ion concentrations for lowest detection limits (LOD) calculation.

Figure S9. (a) UV-vis titration spectra of the probe L_1 upon incremental addition of OAc⁻ ion (0–4 eqv.) in CH₃CN. (b) Job's plot for determining the stoichiometry of the probe L_1 and OAc⁻ ion and (c) The corresponding Benesi-Hildebrand plot for binding constant determination. (d) Absorbance intensity at 456 nm versus OAc⁻ ion concentrations for lowest detection limits (LOD) calculation.

Figure S10. a) Job's plot for determining the stoichiometry of the probe L_2 and F^- ion and (b) The corresponding Benesi-Hildebrand plot for binding constant determination. (c) Absorbance intensity at 550 nm versus F^- ion concentrations for lowest detection limits (LOD) calculation.

Figure S11. (a) UV-vis titration spectra of the probe L_2 upon incremental addition of OAc⁻ ion (0–4 eqv.) in CH₃CN. (b) Job's plot for determining the stoichiometry of the probe L_2 and OAc⁻ ion and (c) The corresponding Benesi-Hildebrand plot for binding constant determination. (d) Absorbance intensity at 550 nm versus OAc⁻ ion concentrations for lowest detection limits (LOD) calculation.

Figure S12. (a) Naked eye sensing of F^- and OAc⁻ using probe L_2 in acetonitrile (b) Colorimetric change of L_2 solution with addition of fluoride ion till 10 eqvt.

Figure S13. (a) Job's plot for determining the stoichiometry of the probe L_3 and F^- ion and (b) The corresponding Benesi–Hildebrand plot for binding constant determination. (c) Absorbance intensity at 450 nm versus F^- ion concentrations for lowest detection limits (LOD) calculation.

Figure S14. (a) UV-Vis absorption change of L_3 with increasing concentration of OAc⁻. (b) The corresponding Job's plot and (c) Benesi–Hildebrand plot for binding constant determination.

Figure S15. Comparative absorption spectra of hydroxide addition to the chemosenors (a) L_1 , (b) L_2 , and (c) L_3 in acetonitrile. Inset: Visible colour change upon addition of the hydroxide anions to the probe solutions.

Figure S16. (a) Absorption spectra of L_1 (10 mM) in different solvents. (b) Corresponding change in the absorption specta of L_1 in different solvent in presence of fluoride anion (50 mM) (Dotted line represents the original absorption spectra in absence of the anion). (c) Change in absorption spectra of L_1 in acetonitrile: $H_2O=4$:1solution (10 mM) with fluoride and acetate anion (50 mM). (d) Change in absorption spectra of L_2 in acetonitrile: $H_2O=4$:1solution (10 mM) with fluoride and acetate anion (50 mM). (d) Change in absorption spectra of L_2 in acetonitrile: $H_2O=4$:1solution (10 mM) with fluoride and acetate anion (50 mM). (d) Change in absorption spectra of L_3 in acetonitrile: $H_2O=4$:1solution (10 mM) with fluoride and acetate anion (50 mM).

Figure S17. (a)Visual changes in fluorescence of L_3 under UV light ($\lambda_{ex} = 365$ nm) in Acetonitrile. (b) Job's plot for determining the stoichiometry of the probe L_3 and OAc⁻ ion and (c) The corresponding Benesi-Hildebrand plot for binding constant determination. (d) Fluorescence intensity at 520 nm versus OAc⁻ ion concentrations for lowest detection limits (LOD) calculation.

Figure S18. Fluorescence emission changes of (a) L_1 and (b) L_2 with various anions.

Figure S19. Stack plot of the ¹H NMR spectra of receptor L_1 in the presence of increasing amounts of (a) TBAF (0.1-6.0 equiv.) and (b) TBAOAc (0.1-6.0 equiv.) recorded in DMSO-d₆.

Figure S20. Stack plot of the ¹H NMR spectra of receptor L_2 in the presence of increasing amounts of (a) TBAF (0.1-8.0 equiv.) and (b) TBAOAc (0.1-4.0 equiv.) recorded in DMSO-d₆.

Figure S21. (a) Titration of L_2 - F^- complex with Trifluoroacetic acid. (b) Reversibility test of the probe L_2 ; Bathochromatic shift of 147 nm with the addition of fluoride ions (F^-) and reversed back to the original upon addition of TFA (upto 5 cycles).

Figure S22. (a) Reversible and recyclable behaviour of probe L_3 on addition of TBAOAc and TFA. (b) Reversibility of UV-Vis response of L_3 (up to five cycles) with alternate addition of OAc⁻ and H⁺. (c) and (d) The truth table for the fabricated 'INHIBIT' logic gate based on the probe behaviour towards OAc⁻ and H⁺.

SI	References	LOD for	LOD for	Solvent	Remarks
N0.		fluoride	acetate	system	
1	Our chemosensors	3.35x10 ⁻⁸ M by L ₂	2.907 x 10 ⁻⁸ M by L ₃	Acetonitrile	L_2 Colorimetric fluoride sensor, L_3 Turn on Fluorescent Acetate sensor
2	G. G. G. Kumar, M. P. Kesavan, G. Sivaraman, J. Rajesh, <i>Sensors and Actuators B</i> , 2018, 255 , 3194-3206.	0.30 µM	NA	PBS buffer	Colorimetric and NIR fluoride sensor
3	D. Sharma, A. Kuba, R. Thomas, S. K. A. Kumar, A. Kuwar, HJ. Choi, and S. K. Sahoo, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 157 , 110–115.	NA	7.37 x10⁻ ⁶ M	DMSO: H ₂ O (95:5)	Acetate selective fluorescent turn- on sensor
4	Q. Lin, X. Liu, TB. Wei, YM. Zhang, Sensors and Actuators B, 2014, 190 , 459–463.	NA	4.0 x10 ⁻⁷ M	DMSO	Acetate selective fluorescent turn- on sensor
5	CB. Bai, J. Zhang, R. Qiao, SY. Mu, M. Meng, B. Wei, C. Wang, CQ. Qu, and YT. Ji, <i>SN Applied</i> <i>Sciences</i> , 2020, 2 , 567.	NA	4.6x10 ⁻⁹ M	HEPES Buffer: acetonitrile (2:8)	Acetate selective fluorescent turn- on sensor
6	G. R. Youa, G. Ji. Park, S. A. Lee, Y. W. Choi, Y. S. Kim, J. J. Lee, and C. Kim, Sensors and Actuators B, 2014, 202 645–655.	NA	140.0 x 10 ⁻⁶ M	DMSO/bis– tris buffer (8:2)	Colorimetric acetate sensor
7	S. Goswami, S. Maity, A. C. Maity, A. K. Das, B. Pakhira, K. Khanra, N. Bhattacharyya, and S. Sarkar, <i>RSC Adv.</i> , 2015, 5 , 5735-5740.	12.7 μM	NA	Acetonitrile	Fluoride selective fluorescent turn- on sensor
8	S. Ghosha, A. Gangulya, A. Bhattacharyya, M. A. Alam, and N. Guchhait, <i>RSC Adv.</i> , 2016, 6 , 67693-67700.	1.3µM	NA	Acetonitrile	Colorimetric fluoride sensor

Table S1. The comparison of our chemosensors with Schiff base based F^- and/or acetate sensors available in recent literatures.