SUPPLEMENTARY MATERIAL

Molecular docking reveals the potential of *Cleome amblyocarpa* isolated compounds to inhibit COVID-19 virus main protease

Ahmed A. Zaki^a, Ahmed A. Al-Karmalawy^b, Yasser A. El-Amier^d, Ahmed Ashour^{a,c}

^aDepartment of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt. ^bDepartment of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.

^cDepartment of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta, Egypt.

^dBotany Department, Ecology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

Abstract

Nine flavonoids and one saponin were isolated from the aerial parts of *Cleome amblyocarpa*. Molecular Docking of isolated compounds on COVID-19 virus main protease showed variable binding affinities with scores ranging from (-8.63 to -6.08) compared to N3 inhibitor (-10.10) and binding modes better than N3 inhibitor in some of the isolated compounds. The descending order of binding affinity of the tested drugs was as follow; N3 inhibitor (**11**, docked) > kaempferitrin (**6**) > isorhamnetin 3,7-*O*- α -L-dirhamnoside (**3**) > kaempferol 3-*O*- β glucoside-7-*O*- α -rhamnoside (**2**) > soysaponin (**1**) > isorhamnetin 7-*O*- α -L-rhamnoside (**10**) > genistein-8-C-glucoside (**8**) > tamarixetin 7-*O*- β -D-glucoside (**4**) > isoprunetin-7-glucoside (**9**) > genistin (**5**) > 5-*O*-methylgenistein (**7**). These results could be a good start for fast further examining the isolated compounds *in vitro* and *in vivo* either alone or in combinations for the treatment of COVID-19 virus. In addition, this work gives an explanation on the SAR required for targeting the newly emerged SARS-CoV-2 protease and facilitates the future design and synthesis of new drugs targeting it as well.

Key words: COVID-19; Cleome amblyocarpa; molecular docking; flavanoids

*Corresponding authors:

Ahmed Ashour

Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt. Email: ahmedadelashour@yahoo.com

List of figures

No.	Title
S 1	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 1
S2	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 1
S3	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 2
S4	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 2
S 5	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 3
S6	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 3
S7	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4
S8	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4
S9	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 5
S10	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 5
S11	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 6
S12	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 6
S13	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 7
S14	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 7
S15	¹ H - NMR spectrum (CD ₃ OD, 400 MHz) of compound 8
S16	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of compound 8
S17	¹ H - NMR spectrum (CD ₃ OD, 400 MHz) of compound 9
S18	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of compound 9
S19	¹ H - NMR spectrum (DMSO- d_6 , 400 MHz) of compound 10
S20	¹³ C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 10

Figure S1: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 1

Figure S2: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 1

Figure S3: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 2

Figure S4: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 2

Figure S5: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound **3**

Figure S6: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound **3**

Figure S8: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4

Figure S9: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 5

Figure S10: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 5

Figure S11: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 6

Figure S12: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 6

Figure S13: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 7

Figure S14: ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 7

Figure S15: ¹H - NMR spectrum (CD₃OD, 400 MHz) of compound 8

Figure S16: ¹³C NMR spectrum (CD₃OD, 100 MHz) of compound 8

Figure S17: ¹H - NMR spectrum (CD₃OD, 400 MHz) of compound 9

Figure S18: ¹³C NMR spectrum (CD₃OD, 100 MHz) of compound 9

Figure S19: ¹H - NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 10

Figure S20: ¹³C NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 10