Sulphonic Acid Functionalized Porphyrin Anchored with meso-Substituted Triazolium Ionic Liquid Moiety: Heterogeneous Photo-Catalyst for Metal/Base Free C-C Cross-Coupling and C-N/C-H activation using Aryl Chloride under visible light irradiations

Karan Bhansali, Subodh Raut, Shital Barange and Pundlik Bhagat*

^{a*}Department of Chemistry, School of Advanced Science,

Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.

E-mail: drprbhagat111@gmail.com

*Equal contribution, Shital contributed for C-N coupling

Sr No.	Table of Content				
<u> </u>	$S_{1} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$	no.			
Eig S1	Synthesis of 3-(chloromethyl)-2-hydroxybenzaldenyde (1a) 1H NMR Spectrum of 3-(chloromethyl) 2 hydroxybenzaldenyde				
$\begin{array}{c} \text{Fig. S1} \\ \text{Fig. S2 & S2} \end{array}$	¹ H NMR Spectrum of 3-(chloromethyl)-2-nydroxybenzaldenyde				
$\Gamma Ig. 52 \propto 55$	bydroxyborzaldabyda				
Sahama S2	Synthesis of 2 ((2H 1.2.2 triagole 2 yi)methyl) 2				
Scheme S2	52 Syntnesis of 5-((2H-1,2,3-triazole-2-yl)metnyl)-2-				
Fig. S4	III NMD Speetrum of 2 ((211, 1, 2, 2, triangle, 2, vi) wether), 2				
F1g. 54	'H NMK Spectrum of 3-((2H-1,2,3-triazole-2-yl)methyl)-2-				
Fig S5	13C NIMP Speatrum of 2 ((211, 1, 2, 2, triagele, 2, st))method) 2				
11g. 55	hydroxybenzaldehyde (1b)	12			
Scheme S3	Synthesis of 2-(3-formyl-2-hydroxybenzyl)1 3-bis(4-sulfobutyl)-2H-	13			
Seneme 55	1 2 3-triazole1 3-dijum hydrogen sulfate (1c)	15			
Fig S6	¹ H NMR Spectrum of 2-(3-formyl-2-hydroxybenzyl)1 3-bis(4-	14			
115.50	sulfobutyl)-2H-1 2 3-triazole1 3-dijum hydrogen sulfate (1c)	17			
Fig S7	¹³ C NMR Spectrum of 2-(3-formyl-2-hydroxybenzyl)1 3-bis(4-	15			
115.57	sulfobutyl)-2H-1 2 3-triazole1 3-dijum hydrogen sulfate (1c)	10			
Scheme S4	Synthesis of phenylene bis	16			
	(azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol)				
	(2a)				
	¹ H NMR Spectrum of phenylene bis	17			
Fig. S8	(azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol)				
	(2a)				
Fig. S9	¹³ C NMR Spectrum of phenylene bis	18			
	(azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol)				
	(2a)				
Scheme S5	Synthesis of 3-((1H-benzo[d]imidazole-1-yl)methyl)-2-	19			
	hydroxybenzaldehyde(2b)				
Fig. S10	¹ H NMR Spectrum of Synthesis of 3-((1H-benzo[d]imidazole-1-	20			
	yl)methyl)-2-hydroxybenzaldehyde(2b)				
Fig. S11	¹³ C NMR Spectrum of Synthesis of 3-((1H-benzo[d]imidazole-1-	21			
	yl)methyl)-2-hydroxybenzaldehyde(2b)				
Scheme S6	Synthesis of 1,1'-(((((((1E, 1'E)-1,4-	22			
	phenylenebis(methanylylidene))bis(methylene))bis(2-hydroxy-3,1-				
	pnenylene))bis(metnylene))bis(3-(3-formyl-2-nydroxybenzyl)-1H-				
	ULNING Sportrum Synthesis of 1 12 (((((1E 12E) 1.4	22			
гі <u>д</u> . 512	The inverse of the mathematical symmetry $((((1 + 1 + 2))))$	23			
	pnenyienebis(metnanyiyiidene))bis(methylene))bis(2-hydroxy-3,1-				
	phenylene))bis(methylene))bis(3-(3-formyl-2-hydroxybenzyl)-1H-				
	benzo[d]imidazole-3-ium) chloride (2c)				
Fig. S13	FT-IR Spectrum of Spectrum Synthesis of 1,1'-(((((((1E, 1'E)-1,4-	24			

	phenylenebis(methanylylidene))bis(methylene))bis(2-hydroxy-3,1- phenylene))bis(methylene))bis(3-(3-formyl-2-hydroxybenzyl)-1H-	
Scheme. S7	Synthesis of 2-(3-(((9E,16E)-15,20-bis(3-((1,3-bis(4-sulfobutyl)-2H- 1,2,3-triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)-10-(2- hydroxy-3-((1-(2-hydroxy-3-(((\in -2((2-hydroxy-3-((3-(2-hydroxy-3- (((9E,19E)-10, 15, 20-tris(3-((1,3-bis(4-sulfobutyl)-2H-1,2,3- triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)- 1H,4H,5H,6H,10H,11H,14H,15H,16H,20H-porphyrin-5- yl)methyl)benzyl)-1H-benzo[d]imidazole-3-ium-1- yl)methyl)benzyl)imino)benzylidene)amino)methyl0benzyl)-1H- benzo[d]imidazole-3-ium-3-yl)methyl)benzyl)- 1H,4H,5H,6H,10H,11H,14H,15H,19H,20H-porphyrin-5-yl)methyl)- 2-hydroxybenzyl)-1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium dichloride dodecakis(hydrogen sulphate)	25-26
Fig. S14	¹ H NMR of Synthesis of 2-(3-(((9E,16E)-15,20-bis(3-((1,3-bis(4- sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2- hydroxybenzyl)-10-(2-hydroxy-3-((1-(2-hydroxy-3-(((€-2((2- hydroxy-3-((3-(2-hydroxy-3-(((9E,19E)-10, 15, 20-tris(3-((1,3- bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2- hydroxybenzyl)-1H,4H,5H,6H,10H,11H,14H,15H,16H,20H- porphyrin-5-yl)methyl)benzyl)-1H-benzo[d]imidazole-3-ium-1- yl)methyl)benzyl)imino)benzylidene)amino)methyl0benzyl)-1H- benzo[d]imidazole-3-ium-3-yl)methyl)benzyl)- 1H,4H,5H,6H,10H,11H,14H,15H,19H,20H-porphyrin-5-yl)methyl)- 2-hydroxybenzyl)-1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium dichloride dodecakis(hydrogen sulphate)	27
Table S1	Optimization of Heck Coupling between 4-chloroaniline and acrylonitrile under Photocatalytic Conditions Catalysed by Photo- catalyst	28
Fig. 815	Photo-catalyst dose	29
Fig. S16	Influence of illumination time	30
Fig. S17	Effect of light intensity	31
Fig. S18	The effect of wavelength of the irradiation on the C-C Coupling	32

	formation					
Fig. S19 &	Fig. S19 & ¹ H NMR and GC-MS Spectrum of (Z)-4-nitrostvrvl acetate					
S20						
Fig. S21	¹ H NMR Spectrum of (E)-3-(4-aminophenyl) acrylonitrile					
Fig. S22	Fig. S22 ¹ H NMR Spectrum of (E)-4-(3-bromopro-1-en-1yl) benzaldehyde					
Fig. S23 &	S23 & ¹ H NMR and GC-MS Spectrum of ethyl (E)-3-(4-					
S24	formylphenyl)acrylate					
Fig. S25 &	¹ H NMR and GC-MS Spectrum of (E)-3-(4-nitrophenyl)prop-2-en-	39-40				
<u>S26</u>	l-amine					
Fig. S27	¹ H NMR Spectrum of (E)-1-nitro-4-styrylbenzene	41				
Fig. S28	¹ H NMR Spectrum of (E)-3-(pyrimidin-2-yl)acrylonitrile	42				
F1g. S29	¹ H NMR Spectrum of (E)-1-(3-bromoprop-1-en-1-yl)-4-	43				
D: 000	nitrobenzene	4.4				
Fig. \$30	¹ H NMR Spectrum of ethyl(E)-3-(4-formylphenyl)acrylate	44				
Fig. S31	¹ H NMR Spectrum of (E)-(2-(pyridine-4-yl)vinyl)pyrimidine	45				
Fig. S32	¹ H NMR Spectrum of 2-(thiophen-2-yl)benzaldehyde	46				
F1g. S33 &	¹ H NMR and ¹³ C Spectrum of (Z)-4-(3-hydroxyprop-1-en-	47-48				
<u>S34</u>	yl)benzaldehyde	10				
Fig. S35	¹ H NMR Spectrum of (Z)-4-(3-bromoprop-1-en-1-yl)benzaldehyde	49				
F1g. S36 &	¹ H NMR and ¹³ C Spectrum of (E)-2(2-(pyridine-4-	50-51				
<u>S37</u>	yl)vinyl)benzaldehyde					
F1g. S38 &	¹ H NMR and ¹³ C Spectrum of (Z)-4-styrylbenzaldehyde	52-53				
<u>S39</u>		5.4				
F1g. S40	GC-MS Spectrum of (Z)-4-styrylbenzaldehyde	54				
Fig S/1 &	¹ H NMR and ¹³ C NMR Spectrum of athyl(E) 3 (2	55 56				
S41 &	hydroxynhenyl)acrylate	55-50				
Fig \$43	GC-MS Spectrum of ethyl(E)-3-(2-hydroxynbenyl)acrylate	57				
Fig. S44	¹ H NMR Spectrum of (7)-1-(4-nitronhenyl)hent-1-en-one	58				
Fig. S45	¹ H NMR Spectrum of ethyl(Z)-3(4-nitrophenyl)acrylate	59				
Fig. S46	¹ H NMR Spectrum of ethyl(Z) -3-(nyrimidin-2-yl)acrylate	60				
Fig. S40	$\frac{1}{11} \text{ NMR Spectrum of (E)-4-styrylbenzaldebyde}$					
Fig S48 &	¹ H NMR and					
S49	13 C Spectrum of (Z)-2-hydroxy-5-(2-(pyridine-4-	62-63				
517	vl)vinvl)benzaldehvde	02 05				
Fig S50	GC-MS Spectrum of (Z)-2-hydroxy-5-(2-(pyridine-4-	64				
	vl)vinyl)benzaldehvde					
Fig. S51 &	¹ H NMR and ¹³ C Spectrum of 4-methoxy-1.1'-biphenvl	65-66				
S52						
Fig. S53 &	¹ H NMR and ¹³ C Spectrum of 4-(phenylethyl)benzaldehyde	67-68				
S54						
Table S2	¹ H and ¹³ C value for Sonogashira coupling between various	69				

	Ethynylbenzene and Aryl halide under Photocatalytic Conditions.	
Table S3	¹ H and ¹³ C value for Formation of CN bond between various Aryl	70
	halide, Pyrrole and Morpholine under Photocatalytic Conditions.	
Fig. S55	¹ H NMR Spectrum of 1-(3-methoxyphenyl)-1-H-pyrrole	71
Fig. S56	¹ H NMR Spectrum of 1-(4-methoxyphenyl)-1H-pyrrole	72
Fig. S57	¹ H NMR Spectrum of 4-(1H-pyrrole-1-yl)aniline	73
Table S4	¹ H and ¹³ C value CH activation between various Aryl halide and	74
	phenolic compound under Photocatalytic Conditions	
Table S5	¹ H and ¹³ C value for Formation of CN bond between various Aryl	75
	halide, Pyrrole and Morpholine under Photocatalytic Conditions.	
Fig. S58	1H NMR Spectrum of 2-phenylnapthalen-1-ol	76
Fig. S59	¹ H NMR Spectrum of 1,1'-biphenyl-4-ol	77
Fig. S60	¹ H NMR Spectrum of 1,1'-biphenyl-4-amine	78
Table S6	¹ H and ¹³ C value CH activation between various Aryl halide and	79
	phenolic compound under Photocatalytic Conditions.	
Table S7	Optimization of Carbon-hydrogen bond activation between 4-	80
	chloroaniline and 1-napthol under Photocatalytic Conditions	
	Catalyzed by Photo-catalyst	
Fig. S61	¹ H NMR Spectrum of 1,1-biphenyl	81
Table S8	¹ H and ¹³ C value for Ullmann Coupling	82
Table S9	Optimization of Ullmann Coupling between 4-chloroaniline under	83
	Photocatalytic Conditions Catalysed by Photo-catalyst	

Synthesis of SAFPTILM

Synthesis of 3-(chloromethyl)-2-hydroxybenzaldehyde (1a)

Scheme. S1. Synthesis of 1a

The synthesis of 1a was achieved by adapting procedure from the known literature. In a 50 mL round bottom flask (RBF), the mixture of Conc. HCl (30 mL) and formaldehyde (3 mL, 100 mmol) was cooled at 0 °C and allowed constant stirring for 30 min. To this mixture, saliacylaldehyde (2.92 mL, 24 mmol) was charged gradually and reaction mixture was kept on magnetic stirring for 48 h at room temperature. The precipitated desired 1a solid (white) was separated and washed with 3 x 10 mL distilled water, followed by acetone and recrystallized from n-hexane. The resulting compound (1a) was dried in hot air oven to give 3.5 g (Yield: 87 %)

Fig. S1 ¹H NMR Spectrum of 3-(chloromethyl)-2-hydroxybenzaldehyde

¹H NMR (400 MHz, DMSO-d6) δ: δ 10.92 (s, 1H), 10.27 (s, 1H), 7.72 (d, 1H), 7.58 (q, 1H), 7.02 (d, 1H), 4.75 (s, 2H).

Fig. S2 ¹³C NMR Spectrum of 3-(chloromethyl)-2-hydroxybenzaldehyde ¹³C NMR (100 MHz, DMSO-d6) δ: 191.19, 161.20, 137.43, 129.59, 129.27, 122.44, 118.22, 44.16

Fig. S3 FT-IR: (KBr, v/cm⁻¹):- 3213.41, 2875.86, 1649.14, 1620.21, 1577.77, 1475.54, 1436.97, 1379.10, 1280.73, 1255.66, 1186.22, 1145.72, 1114.86, 1008.77, 947.05, 902.69, 846.75, 767.67, 717.52, 686.66, 659.66, 572.86, 497.63, 449.41.

Synthesis of 3-((2H-1,2,3-triazole-2-yl)methyl)-2-hydroxybenzaldehyde (1b)

Scheme. S2 Synthesis of 1b

Into a 100 mL RBF sodium hydride was placed and mixed with 30 mL n-hexane. The reaction mixture was stirred at room temperature (RT) for 40 min., after which time the excess solvent was decanted under vacuum to remove paraffin oil.²⁸ The flask containing NaH (1.32 g, 55 mmol) was charged with 15 mL tetrahydrofuran (THF), cooled in ice bath to maintain 2 to 3 °C temperature, and solution of triazole (3.45 g, 50 mmol) in THF was added dropwise and stirred for 2 h at cold condition. The reaction mixture was loaded with chloromethylated salicylaldehyde (1a) (8.50 g, 50 mmol) in THF very slowly at the same temperature. The reaction mixture was then reflux for 48 h (60 °C). After cooling, the salt was removed by filtration and the solvent was evaporated under vacuum by rotavapour to get sticky yellowish liquid. The product was charged with the mixture of ethyl acetate and saturated brine solution to remove remaining salt. The organic layer was separated and dried using anhydrous sodium sulphate for overnight. The ethyl acetate layer was concentrated using rotavapour to get sticky yellowish solid. The resulting solid was rinsed by diethyl ether (3 X 10 mL) and dried in hot air oven to afford yellowish fine powder 1b. Yield-84%, 8.5 gram.

Fig. S4 ¹H NMR Spectrum of 3-((2H-1,2,3-triazole-2-yl)methyl)-2-hydroxybenzaldehyde (1b) ¹H NMR (400 MHz, DMSO-d6) δ: δ 10.37 (s, 1H), 10.26 (s, 1H), 8.64 (s, 2H), 7.96 (d, 1H), 7.47 (d, 1H), 6.98 (t, 1H), 5.35 (s, 2H).

Fig. S5 ¹³C NMR Spectrum of of 3-((2H-1,2,3-triazole-2-yl)methyl)-2-hydroxybenzaldehyde (1b)

¹³C NMR (100 MHz, DMSO-d6) δ: 191.20, 161.44, 152.21, 144.48, 136.61, 128.60, 127.43, 122.68, 118.29, 51.71

Synthesis of 2-(3-formyl-2-hydroxybenzyl)1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole1,3-diium hydrogen sulfate (1c)

Scheme. S3 Synthesis of 1c

1, 4-Butylsultone (6.80 g, 50 mmol) was added slowly to a 30 mL solution of triazole salicylaldehyde (5.08 g, 25 mmol) (1b) in acetonitrile into a flask and the mixture was refluxed with constant stirring for 48 h. The solvent was evaporated to dryness by rotavapor and the resulting zwitter ion intermediate was quenched with 10% (1ml of H_2SO_4 in 10 ml of H_2O) aq. H_2SO_4 solution.²⁹ The reaction mixture was refluxed for 12 h, after which time the excess sulfuric acid was evaporated under vacuum. The solid sticky product was washed with diethyl ether (3 x 10 mL), to achieve pure sticky product (1c) confirm by by ¹H NMR and ¹³C NMR. Yield=89%, 15 g.

Fig. S6 ¹H NMR Spectrum of 2-(3-formyl-2-hydroxybenzyl)1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole1,3-diium hydrogen sulfate (1c)

¹H NMR (400 MHz, DMSO-d6) δ: δ 10.21 (s, 1H), 9.42 (s, 1H), 9.19 (s, 1H), 8.63 (s, 4H), 7.68 (s, 1H), 7.55 (d, 1H), 7.02 (d, 1H), 5.47 (s, 2H), 3.36 (t, 4H), 2.05 (t, 2H), 1.72 (t, 2H), 1.62 (t, 4H), 1.45 (t, 4H).

Fig. S7 ¹³C NMR Spectrum of 2-(3-formyl-2-hydroxybenzyl)1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole1,3-diium hydrogen sulfate (1c)

¹³C NMR (100 MHz, DMSO-d6) δ: 191.32, 161.35, 142.99, 142.87, 137.19, 129.58, 122.64, 118.25, 74.97, 70.10, 60.89, 51.66, 48.27, 31.87, 23.30, 22.90, 22.10, 21.81.

Synthesis of phenylene bis

(chloromethyl)phenol) (2a)

Scheme. S4 Synthesis of 2a

p-Phenylenediamine (2.16 g, 20 mmol) and chloromethylated salicylaldehyde (1a, 6.80 g, 40 mmol) were weighed and mixed into a 100 mL RBF containing 30 mL methanol and the mixture was refluxed with a magnetic stirring for 3 h.³⁰ The reaction mixture was cooled to RT affording the product as a red colour solid product in quantitative yield. The resulting product was washed with methanol to acquire red colour solid, obtained by filtering and dried in hot air oven at 80 °C. Yield = 92%, 14.5 g.

Fig. S8 ¹H NMR Spectrum of phenylene bis (azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol) (2a)

¹H NMR (400 MHz, DMSO-d6): δ 8.65 (d, 2H), 8.63 (d, 2H), 8.54 (s, 4H), 8.45 (s, 2H), 8.18 (d, 2H), 6.55 (s, 2H), 5.01 (s, 4H)

Fig. S9 ¹³C NMR Spectrum of phenylene bis (azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol) (2a)

¹³C NMR (100 MHz, DMSO-d6) δ: 166.048, 152.10, 136.61, 133.40, 130.38, 125.37, 118.71,
61.16

Synthesis of 3-((1H-benzo[d]imidazole-1-yl)methyl)-2-hydroxybenzaldehyde(2b)

Scheme. S5 Synthesis of 2b

To a 100 mL RBF sodium hydride was placed and 30 mL n-hexane was added and the reaction mixture was stirred at RT for 40 min., after which time the excess solvent was decanted under vacuum to remove paraffin oil (same ref no as for 1a). The flask containing NaH (0.96g, 40 mmol) was charged with 15 mL tetrahydrofuran (THF), cooled in ice bath to maintain 2 to 3 °C temperature, and solution of benzimidazole (2.36 g, 20 mmol) in THF was added gradually and stirred for 2 h at cold condition. The reaction mixture was charged with chloromethylated salicylaldehyde (1a) (3.41 g, 20 mmol) in THF steadily at the same temperature. The reaction mixture was then refluxed for 48 h (60 °C). After cooling, the salt was discarded by filtration and the solvent was concentrated under vacuum by rotavapour to get sticky yellowish liquid. To the product the mixture of ethyl acetate and saturated brine solution was added to remove remaining salt. The organic layer was separated and dried using anhydrous sodium sulphate for 12 h. The ethyl acetate layer was evaporated using rotavapour to get sticky yellowish solid.³¹ The resulting solid was washed by diethyl ether (3 X 10 mL) and dried in hot air oven to obtain yellowish fine powder 2b. Yield- 82 %, 8.2 gram.

Fig. S10 ¹H NMR Spectrum of Synthesis of 3-((1H-benzo[d]imidazole-1-yl)methyl)-2hydroxybenzaldehyde(2b)

¹H NMR, "1H NMR (400MHz, CdCl3-d6) : δ 11.03 (s, 1H), 9.81 (s, 1H), 7.97 (s, 1H), 7.83 (d 2H), 7.39 (d, 1H), 7.26-7.27 (m, 3H), 6.99 (d, 1H), 5.20 (s, 2H).

gnat BMSA	re SI VI	T VFLLC	123.08 125.08 125.08 125.08 125.08 125.08 10	77.37 76.73	06°27		BRUKER
							Current Data Parameters NAME Dr.PDK020320 EXPNO 135 PROCNO 1
							P2 Acquisition Presumeters Date Date 20200302 Time 17.06 h INSTRUM spect PROBIL 2108618_0505 PUTPROG zgg30 TD 5536 SWH 24038.461 Hz SWH 24038.461 Hz PUTDROG 1237.90 C 1233458 iec RG 127.79 DE 0.500 usec DE 0.500 usec DE 200000000 sec D1 0.0000000 sec D1 9.80 coc PIN 9.80 coc PIN 9.80 coc PIN 16.00.2596100 MHz NCC1 9.80 coc PIN 16.00.00 usec PIN 16.00.0000000 W SFO2 10.2597010 MHz NCC2 111 CPDPR6[2 value16 PICPD2 0.39716000 W PIN 16.3000 usec PIN 16.3000 usec PIN 1
*****			an a	กรุงประสุ <u>ม</u> สุนกรุง ¹ างรุงประการเห	era-adirb-turia-annat-lana	****	F2 - Processing parameters SI 32768 SF 100.6449542 MHz WDW EM
	00 180	160	140 120 10		60 40	20 0 ppm	LB 1.00 Hz GB 0

Fig. S11 ¹³C NMR Spectrum of Synthesis of 3-((1H-benzo[d]imidazole-1-yl)methyl)-2hydroxybenzaldehyde(2b)

 ^{13}C NMR (100MHz, CdCl_3): δ 196.13, 161.54, 143.97, 142.95, 135.62, 133.63, 131.86, 127.07, 123.40, 122.60, 120.60, 120.55, 118.72, 109.86, 47.89

Synthesis of 1,1'-((((((((1E, 1'E)-1,4-phenylenebis(methanylylidene))bis(methylene))bis(2-hydroxy-3,1-phenylene))bis(methylene))bis(3-(3-formyl-2-hydroxybenzyl)-1H-benzo[d]imidazole-3-ium) chloride (2c)

Scheme. S6 Synthesis of 2c

In a 50 mL RBF, the mixture of phenylene bis (azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol) 2a (0.412 g 1 mmol) and benzamidazole salicylaldehyde 2b (0.504 g, 2 mmol) was suspended in 30 mL chloroform. The mixture was set aside on constant stirring for 48 h.³² After the completion of reaction, the precipitated NaCl salt was separated by filtration and rinsed with chloroform twice. The resulting filtrate was concentrated under vacuum to acquire precipitate, dried in hot air oven to give 2c.Yield: 74 %, 14.2 g.

In a 50 mL RBF, the mixture of phenylene bis (azanylylidene))bis(methanylylidene))bis(2-(chloromethyl)phenol) 2a (0.412 g 1 mmol) and benzamidazole salicylaldehyde 2b (0.504 g, 2 mmol) was suspended in 30 mL chloroform. The mixture was set aside on constant stirring for 48 h.³² After the completion of reaction, the precipitated NaCl salt was separated by filtration and rinsed with chloroform twice. The resulting filtrate was concentrated under vacuum to acquire precipitate, dried in hot air oven to give 2c.Yield: 74 %, 14.2 g.

Fig. S12 ¹H NMR Spectrum of 1,1'-(((((((1E, 1'E))-1,4-phenylenebis(methanylylidene))bis(methylene))bis(2-hydroxy-3,1-phenylene))bis(methylene))bis(3-(3-formyl-2-hydroxybenzyl)-1H-benzo[d]imidazole-3-ium) chloride (2c)

¹H NMR (400 MHz, DMSO-d6): δ 10.88 (s, 2H), 10.22 (s, 2H), 8.60 (s, 2H), 8.88 (s, 2H), 7.55-7.57 (m, 6H), 7.51 (d, 5H), 0.00-7.01 (m, 4H), 6.99 (s, 5H), 5.46 (s, 4H), 4.64 (s, 4H), 3.92 (s, 2H), 3.36 (s, 4H)

Fig. S13 FT-IR: (KBr, v/cm⁻¹): 3535.52, 3109.25, 3055.24, 1774.51, 1707, 1618.28, 1533.41, 1458.18, 1413.82, 1340.53, 1313.52, 1168.86, 1145.72, 1109.07, 1060.85, 985.62, 937.40, 867.97, 823.60, 765.74, 715.59, 661.94, 623.01, 603.72, 567.07, 516.92, 465.20

 $\begin{aligned} & \text{Synthesis of } 2-(3-(((9E,16E)-15,20-bis(3-((1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)-10-(2-hydroxy-3-((1-(2-hydroxy-3-(((€-2((2-hydroxy-3-(((3-(2-hydroxy-3-(((9E,19E)-10, 15, 20-tris(3-((1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)-1H,4H,5H,6H,10H,11H,14H,15H,16H,20H-porphyrin-5-yl)methyl)benzyl)-1H-benzo[d]imidazole-3-ium-1-yl)methyl)benzyl)imino)benzylidene)amino)methyl0benzyl)-1H-benzo[d]imidazole-3-ium-3-yl)methyl)benzyl)-1H,4H,5H,6H,10H,11H,14H,15H,19H,20H-porphyrin-5-yl)methyl)-2-hydroxybenzyl)-1H,4H,5H,6H,10H,11H,14H,15H,19H,20H-porphyrin-5-yl)methyl)-2-hydroxybenzyl)-1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium dichloride dodecakis(hydrogen sulphate) \end{aligned}$

Scheme. S7. Synthesis of Photocatalyst (SAFPTILM)

In a 100 mL RBF, the precursors (1c) (4.03 g, 6 mmol) and (2c) (0.875 g, 1 mmol) were weighed, mixed with 25 mL acetic acid and stirred for 10 min. To this, pyrrole (0.536 g, 8 mmol) was added and the reaction mixture continued for stirring at room temperature for 1 h. The desired dark brown solid SAFPTILM was separated by vacuum filtration, rinsed with water (5 x 15 mL) to remove traces of acetic acid. Finally the product was frequently washed with acetone and dried in oven at 80°C to furnish the SAFPTILM photocatalyst.³³ Yield: 90 %, 4.52 g.

Fig. S14 1 H NMR Spectrum of Synthesis of Synthesis of 2-(3-((15,20-bis(3-((1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)-10-(2-hydroxy-3-((1-(2-hydroxy-3-(((E)-4-(E)-((2-hydroxy-3-((3-(2-hydroxy-3-((10,15, 20-tris(3-((1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)-20-tris(3-((1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium-2-yl)methyl)-2-hydroxybenzyl)-yl)methyl)benzyl)-1H-benzo[d]imidazole-3-ium-1-1

yl)methyl)benzyl)imino)benzylidene)amino)methyl)benzyl)-1H-benzo[d]imidazole-3-ium-1yl)methyl)benzyl)imino)methyl)benzylidene)amino)methyl)benzyl)-1H-benzo[d]imidazol-3ium-3-yl)methyl)benzyl)Porphyrin-5-yl)methyl)-2-hydroxybenzyl)-1,3-bis(4-sulfobutyl)-2H-1,2,3-triazole-1,3-diium dichloride dodecakis (hydrogen sulphate)

¹H NMR 400 MHz, DMSO-d6: δ 9.63 (s, 10H), 8.94 (s, 12H), 7.34 (s, 6H), 7.29 (s, 4H), 7.19 (s, 2H), 7.03 (s, 5H), 6.69 (s, 5H), 6.66 (s, 2H), 6.33 (s, 13H), 6.19 (d, 20H), 5.71 (d, 29H), 5.45 (d, 3H), 4.06 (s, 16H), 3.17 (t, 26H), 1.97 (t, 24H), 1.57 (s, 8H), 1.43 (s, 8H), 1.21 (s, 13H), 0.76 (d, 16H), 0.45 (t, 22H), -0.0989 (s, 4H). ¹³C NMR (100MHz, DMSO) δ 189.80, 158.99, 150.10, 142.38, 134.64, 127.17, 125.65, 120.50, 116.44, 116.08, 72.89, 49.76, 46.26, 21.33, 20.90, -0.50.

Table S1. Optimization of Heck Coupling between 4-chloroaniline and acrylonitrile under Photocatalytic Conditions Catalysed by Photo-catalyst

Entry	Reagent	Catalyst (mg)	Time (h)	Yield (%)
1	R1 +R2	20	24	89
2	R1 +R2	5	24	54
3	R1 +R2	10	24	68
4	R1 +R2	15	24	76
5	R1 +R2	20	24	89
6	R1 +R2	25	24	90
7	R1 +R2	20	6	61
8	R1 +R2	20	12	70
9	R1 +R2	20	18	88
10	R1 +R2	20	24	89
11	R1 +R2	20	15	87 ^a
12	R1 +R2	20	13	90 ^b
13	R1 +R2	20	18	90°
14	R1 +R2	20	18	92 ^d
15	R1 +R2	20	18	5 ^e

Reaction conditions: 4-chloroaniline (30 mmol, 3.82 gm), acrylonitrile (32 mmol, 1.59 gm), photocatalysts SAFPTILM (20 mg), 5W yellow light, 18 h

a=9W light ; b= 12 W light ; c= 5W Green light;

d= 5W yellow light; e= reaction performed in dark

Fig. S15 Photo-catalyst dose

Influence of illumination time

Fig. S16 Influence of illumination time

Effect of light intensity

Fig. S17 Effect of light intensity

The effect of wavelength of the irradiation on the C-C coupling

Fig. S18 The effect of wavelength of the irradiation on the C-C Coupling formation

Heck coupling derivatives

Fig. S19 ¹H NMR Spectrum of (Z)-4-nitrostyryl acetate

¹H NMR (400 MHz, CDCl₃) δ : δ 8.20 (d, 2H), 8.18 (d, 2H), 7.53 (d, 1H), 7.51 (d, 1H), 1.55 (s, 3H)

Fig. S20 GC-MS Spectrum of (Z)-4-nitrostyryl acetate GC-MS: 207.19

Fig. S21 ¹H NMR Spectrum of (E)-3-(4-aminophenyl) acrylonitrile

¹H NMR (400 MHz, DMSO-d6): δ 7.94 (d, 2H), 6.60 (d, 2H), 5.97 (s, 2H), 5.75 (s, 2H), .

GC-MS: 144.18

Fig. S22 ¹H NMR Spectrum of (E)-4-(3-bromopro-1-en-1yl) benzaldehyde

¹H NMR (400 MHz, DMSO-d6): δ 10.01 (s, 1H), 7.95 (t, 2H), 7.70 (d, 2H), 7.57 (d, 2H), 2.86 (s, 2H).

¹³C NMR (100 MHz, DMSO-d6): δ 166.92, 138.25, 131.65, 131.61, 130.12, 129.85, 129.21, 40.2

GC-MS: 225.09

Fig. S23 ¹H NMR Spectrum of ethyl (E)-3-(4-formylphenyl)acrylate

¹H NMR (400 MHz, DMSO-d6): δ 10.01 (s, 1H), 7.93 (t, 2H), 7.69 (d, 2H), 7.57 (d, 2H), 4.07 (q, 2H), 36.36 (t, 3H).

Fig. S24 GC-MS Spectrum of ethyl (E)-3-(4-formylphenyl) acrylate GC-MS: 204.23

Fig. S25 ¹H NMR Spectrum of (E)-3-(4-nitrophenyl)prop-2-en-1-amine

¹H NMR (400 MHz, DMSO-d6): δ 8.47 (d, 2H), 8.25 (d, 2H), 7.76 (s, 1H), 7.74 (s, 1H), 4.38 (t, 2H), 1.22 (s, 2H)

Fig. S26 GC-MS Spectrum of (E)-3-(4-nitrophenyl)prop-2-en-1-amine GC-MS: 178.19

Fig. S27 ¹H NMR Spectrum of (E)-1-nitro-4-styrylbenzene

¹H NMR (400 MHz, CDCl₃) δ : δ 8.19 (d, 4H), 8.18 (d, 4H), 7.53 (d, 1H), 7.51 (d, 1H).

GC-MS: 225.25

Fig. S28 ¹H NMR Spectrum of (E)-3-(pyrimidin-2-yl)acrylonitrile

¹H NMR (400 MHz, CDCl₃) δ : δ 8.66 (d, 2H), 7.53 (d, 1H), 7.31 (t, 1H), 7.11 (d, 1H)

GC-MS: 130.15

Fig. S29 ¹H NMR Spectrum of (E)-1-(3-bromoprop-1-en-1-yl)-4-nitrobenzene

¹H NMR (400 MHz, CDCl₃) δ :δ 8.19 (d, 2H), 8.18 (d, 2H), 7.53 (d, 1H), 7.51 (t, 1H), 1.59 (s, 1H)

Fig. S30 ¹H NMR Spectrum of ethyl(E)-3-(4-formylphenyl)acrylate

¹H NMR (400 MHz, DMSO-d6): δ 9.97 (s, 1H), 7.93 (d, 2H), 7.66 (d, 3H), 7.54 (d, 1H), 2.40 (q, 2H), 1.16 (t, 3H).

¹³C NMR (100 MHz, DMSO-d6): δ 192.69, 167.02, 139.91, 138.32, 138.23, 131.61, 130, 129.62, 129.20, 65.2, 20.4

Fig. S31 ¹H NMR Spectrum of (E)-(2-(pyridine-4-yl)vinyl)pyrimidine

¹H NMR (400 MHz, DMSO-d6): δ 8.77 (d, 2H), 8.52 (s, 2H), 7.56 (t, 1H), 7.46 (s, 1H), 6.74 (t, 1H), 6.12 (d, 1H), 5.54 (d, 1H).

Fig. S32 ¹H NMR Spectrum of 2-(thiophen-2-yl)benzaldehyde

¹H NMR (400 MHz, DMSO-d6): δ 10.26 (s, 1H), 7.76 (q, 2H), 7.61 (t, 3H), 7.50 (d, 1H), 7.45 (t, 1H).

Fig. S33 ¹H NMR Spectrum of (Z)-4-(3-hydroxyprop-1-en-yl)benzaldehyde

Fig. S34 ¹³C NMR Spectrum of (Z)-4-(3-hydroxyprop-1-en-yl)benzaldehyde

¹H NMR (400 MHz, DMSO-d6): δ 9.97 (s, 1H), 7.91 (d, 2H), 7.65 (d, 2H), 5.91 (d, 2H), 5.56 (s, 1H), 5.26 (d, 1H), 5.13 (d, 1H).

¹³C NMR (100 MHz, DMSO-d6): δ 192.67, 139.90, 135.23, 131.63, 129.80, 129.14, 128.82, 128.68, 117, 66.74

Fig. S35 ¹H NMR Spectrum of (Z)-4-(3-bromoprop-1-en-1-yl)benzaldehyde

¹H NMR (400 MHz, DMSO-d6): δ 8.23 (s, 4H), 7.47 (d, 2H), 7.39 (d, 3H), 5.84 (d, 1H), 5.29 (d, 1H), 4.72 (s, 2H).

Fig. S36 ¹H NMR Spectrum of (E)-2(2-(pyridine-4-yl)vinyl)benzaldehyde

¹H NMR (400 MHz, CDCl₃) : δ 10.49 (s, 1H), 8.49 (q, 2H), 7.51 (q, 1H), 7.30 (t, 3H), 7.00 (s, 1H), 6.11 (s, 1H), 5.69 (s, 1H), 5.49 (d, 1H).

Fig. S37 ¹³C NMR Spectrum of (E)-2(2-(pyridine-4-yl)vinyl)benzaldehyde

¹³C NMR (100 MHz, CDCl₃) : δ 206.97, 149.95, 149.71, 147.10, 138.83, 133.12, 130.62, 129.63, 129.27, 128.37, 127.18, 121.41, 120.80, 118.78, 117.59

Fig. S38 ¹H NMR Spectrum of (Z)-4-styrylbenzaldehyde

¹H NMR (400 MHz, CDCl₃) : δ 9.98 (s, 1H), 7.83 (d, 3H), 7.82 (d, 2H), 7.52 (t, 2H), 7.51 (d, 2H), 7.42 (s, 2H).

Fig. S39 ¹³C NMR Spectrum of (Z)-4-styrylbenzaldehyde

¹³C NMR (100 MHz, CDCl₃) : δ 190.86, 140.98, 134.73, 131.52, 130.91, 129.47, 128.83, 128.05.

Fig. S40 GC-MS Spectrum of (Z)-4-styrylbenzaldehyde GC-MS: 208.26

Fig. S41 ¹H NMR Spectrum of ethyl(E)-3-(2-hydroxyphenyl)acrylate

 ^1H NMR (400 MHz, CDCl₃) : δ 7.30 (d, 1H), 7.14 (d, 1H), 7.35 (d, 1H), 6.87 (d, 1H), 6.85 (d, 1H), 6.83 (d, 1H), 5.74 (s, 1H), 4.12 (q, 2H), 1.29 (t, 3H), .

Fig. S42 ¹³C NMR Spectrum of ethyl(E)-3-(2-hydroxyphenyl)acrylate

¹³C NMR (100 MHz, CDCl₃) : δ 166.51, 151.45, 130.63, 129.07, 128.59, 128.38, 121.33, 119.94, 116.32, 60.64, 14.17

Fig. S43 GC-MS ethyl(E)-3-(2-hydroxyphenyl)acrylate GC-MS : 192.018

Fig. S44 ¹H NMR Spectrum of (Z)-1-(4-nitrophenyl)hept-1-en-one

¹H NMR (400 MHz, DMSO-d6): δ 8.25 (d, 4H), 7.75 (d, 2H), 2.70 (t, 2H), 2.26-2.28 (m, 4H), 1.22 (t, 3H)

Fig. S45 ¹H NMR Spectrum of ethyl(Z)-3(4-nitrophenyl)acrylate

¹H NMR (400 MHz, DMSO-d6): δ 8.25 (d, 4H), 7.75 (d, 2H), 2.28-2.33 (m, 2H), 1.23 (t,3H)

Fig. S46 ¹H NMR Spectrum of ethyl(*Z*)-3-(pyrimidin-2-yl)acrylate

¹H NMR (400 MHz, DMSO-d6): δ 7.31-7.33 (m, 3H), 6.83 (s, 1H), 6.18 (d, 1H), 4.09-4.10 (m, 2H), 1.24 (t, 3H)

Fig. S47 ¹H NMR Spectrum of (E)-4-styrylbenzaldehyde

¹H NMR (400 MHz, DMSO-d6): δ 9.98 (s, 1H), 8.00 (d, 2H), 7.42 (t, 4H), 7.31 (q, 2H), 7.10 (d, 1H), 6.76 (s, 1H).

Fig. S48 ¹H NMR Spectrum of (Z)-2-hydroxy-5-(2-(pyridine-4-yl)vinyl)benzaldehyde

¹H NMR (400 MHz, DMSO-d6): δ 10.16 (s, 1H), 9.98 (s, 1H), 7.30 (d, 1H), 7.12 (t, 4H), 6.98 (d, 1H), 6.77 (q, 3H).

Fig. S49 ¹³C NMR Spectrum of (Z)-2-hydroxy-5-(2-(pyridine-4-yl)vinyl)benzaldehyde

¹³C NMR (100 MHz, DMSO-d6): δ 192.42, 170.79, 153.54, 130.28, 129.99, 129.76, 128.99, 128.83, 128.67, 128.40, 128.11, 120.66, 120.41, 120.14, 117.42

Fig. S50 GC-MS Spectrum of (Z)-2-hydroxy-5-(2-(pyridine-4-yl)vinyl)benzaldehyde GC-MS: 225.25

Fig. S51 ¹H NMR Spectrum of 4-methoxy-1,1'-biphenyl ¹H NMR (400 MHz, DMSO-d6): δ 7.54-7.68 (m, 7H), 6.72 (d, 2H), 3.66 (s, 2H).

Fig. S52 ¹³C NMR Spectrum of 4-methoxy-1,1'-biphenyl ¹³C NMR (100 MHz, CDCl₃) δ: 159.61, 138.40, 117.21, 83.46, 55.67.

Fig. S53 ¹H NMR Spectrum of 4-(phenylethyl)benzaldehyde

400 MHz, DMSO-d6: δ 9.94 (s, 1H), 7.82-7.85 (m, 4H), 7.61 (d, 2H), 7.50 (d, 3H).

Fig. S54 ¹³C NMR Spectrum of 4-(phenylethyl)benzaldehyde ¹³C NMR (100 MHz, CDCl₃) δ: 192.60, 137.05, 138.27, 135.74, 132.14, 131.44, 130.09, 129.80, 129.72, 129.43, 129.20, 129.14, 129.02, 81.10

Table S2. ¹H and ¹³C value for Sonogashira coupling between various Ethynylbenzene and Aryl halide under Photocatalytic Conditions.

Sonogashira Coupling product	Conformation Data (NMR data)		
	400 MHz, DMSO-d6: δ 9.94 (s, 1H), 7.82-7.85 (m, 4H), 7.61 (d, 2H), 7.50 (d, 3H). ¹³ C NMR (100 MHz, DMSO) δ: 192.60, 137.05, 138.27, 135.74, 132.14, 131.44, 130.09, 129.80, 129.72, 129.43, 129.20, 129.14, 129.02, 81.10		

Entry	Reagent	Catalyst (mg)	Time (h)	Yield (%)
1	R1 + R2	5	24	56
2	R1 + R2	10	24	70
3	R1 +R2	15	24	87
4	R1 + R2	20	24	96
5	R1 + R2	25	24	97
6	R1 + R2	20	6	69
7	R1 + R2	20	12	82
8	R1 + R2	20	18	89
9	R1 + R2	20	24	96

Table S3. Optimization of Sonogashira between 4-chloroaniline and ethynylbenzene underPhotocatalytic Conditions Catalyzed by Photo-catalyst

Buchwald-Hartwig Cross Coupling Reaction

Fig. S55 ¹H NMR Spectrum of 1-(3-methoxyphenyl)-1-H-pyrrole

Fig. S56 ¹H NMR Spectrum of 1-(4-methoxyphenyl)-1H-pyrrole

100 MHz, CdCl₃-d6: δ 7.70 (d, 2H), 7.49 (d, 2H), 7.29 (d, , 2H), 6.62 (d, 2H), 0.00 (s, 3H).

Fig. S57 ¹H NMR Spectrum of 4-(1H-pyrrole-1-yl)aniline

400 MHz, DMSO-d6: δ 7.03 (d, 2H), 6.83 (d, 2H), 6.75 (d, 2H), 6.54 (d, 2H), 5.23 (s, 2H).

Table S4. ¹H and ¹³C value for Formation of CN bond between various Aryl halide, Pyrrole and Morpholine under Photocatalytic Conditions.

Formation of C-N bond Product	Conformation Data (NMR data)
H ₂ N-N	400 MHz, DMSO-d6: δ 7.03 (d, 2H), 6.83 (d, 2H), 6.75 (d, 2H), 6.54 (d, 2H), 5.23 (s, 2H).
H ₃ CO-	400 MHz, CdCl3-d6: δ 7.70 (d, 2H), 7.49 (d, 2H), 7.29 (d, 2H), 6.62 (d, 2H), 0.00 (s, 3H).

Entry	Reagent	Catalyst (mg)	Time (h)	Yield (%)
1	R1 +R2	20	24	87
2	R1 +R2	5	24	52
3	R1 +R2	10	24	64
4	R1 +R2	15	24	77
5	R1 +R2	20	24	87
6	R1 +R2	25	24	88
7	R1 +R2	20	6	60
8	R1 +R2	20	12	72
9	R1 +R2	20	18	87
10	R1 +R2	20	24	88

Table S5. Optimization of Formation of C-N bond between 4-chloroaniline and 1H-pyrroleunder Photocatalytic Conditions Catalyzed by Photo-catalyst

C-H Bond Activation

Fig. S58 ¹H NMR Spectrum of 2-phenylnapthalen-1-ol

Fig. S59 ¹H NMR Spectrum of 1,1'-biphenyl-4-ol

	Carbon-hydrogen activation Product	bond	Conformation data)	Data	(NMR		
	OH		400 MHz, DM3 (s, 1H), 8.11 (c 1H), 7.44 (t, 6H	SO-d6: l, 2H), l), 7.30	δ 10.11 7.80 (d, (t, 2H).		
Table S6. ¹ H value CH between	OH		400 MHz, DM (s, 1H), 7.32- 0.00 (d, 2H), 0.0	ISO-d6: 7.34 (1 00 (d, 2	: δ 0.00 n, 5H), H).	and activatio various	¹³ C on Aryl

halide and phenolic compound under Photocatalytic Conditions.

Entry	Reagent	Catalyst (mg)	Time (h)	Yield (%)
1	R1 +R2	5	25	49
2	R1 +R2	10	25	57
3	R1 +R2	15	25	69
4	R1 +R2	20	25	77
5	R1 +R2	25	25	77
6	R1 +R2	20	5	54
7	R1 +R2	20	10	61
8	R1 +R2	20	15	67
9	R1 +R2	20	20	76
10	R1 +R2	20	25	77

 Table S7. Optimization of Carbon-hydrogen bond activation between 4-chloroaniline and

 1-napthol under Photocatalytic Conditions Catalysed by Photo-catalyst

Ullmann Coupling

Fig. S61 ¹H NMR Spectrum of 1,1-biphenyl

400 MHz, DMSO-d6: 8 7.55 (d, 4H), 7.31-7.33 (m, 6H)

Table S8. ¹H and ¹³C value for Ullmann Coupling

Ullmann	Coupling	Conformation Data (NMR data)
Product		
		400 MHz, DMSO-d6: δ 7.55 (d, <i>J</i> = 8.00 Hz, 4H), 7.31-7.33 (m, 6H)

Entry	Reagent	Catalyst (mg)	Time (h)	Yield (%)
1	R1 +R2	5	24	57
3	R1 +R2	10	24	74
4	R1 +R2	15	24	88
5	R1 +R2	20	24	91
6	R1 +R2	25	24	91
7	R1 +R2	20	8	74
8	R1 +R2	20	12	81
9	R1 +R2	20	16	91
10	R1 +R2	20	24	91

Table 9. Optimization of Ullmann Coupling between 4-chloroaniline under PhotocatalyticConditions Catalysed by Photo-catalyst

Other derivatives of heck coupling

During recrystallization of Heck coupling product