Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

ELECTRONIC SUPPORTING INFORMATION (ESI)

Monolith catalyst design by 3D printing: A reusable support for modern palladium-catalyzed cross-coupling reactions

Oyekunle Azeez Alimi, Christianah Aarinola Akinnawo and Reinout Meijboom*

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of

Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa.

*Author for all correspondence

Correspondence e-mail: rmeijboom@uj.ac.za

Ph.: +27 11 559 2367; Fax: +27 11 559 2819

Mechanical characterization

Compression test on the 3D printed monoliths (Pd-MOT) were performed using mechanical testing equipment (ZwickiLine Z5.0 TS, Zwick-Roell) at a displacement rate of 0.5mmmin⁻¹ until crushing. The monolith sample was smoothened at top/bottom surfaces prior analysis to ensure a homogenous distribution of load on the 3D printing mediated structure. Stress-strain data were obtained from the load and displacement data. The compressive strength was calculated from the load at failure and the nominal contact surface area.

Hot filtration test experiment

Figure S1: Hot filtration test for Sonogashira-Hagihara reaction (a) with Pd-MOT (b) with Pd/Al_2O_3 catalyst

Figure S2: (a) TEM image of used Pd-MOT catalyst (b) TEM image of used Pd/Al_2O_3 catalyst

Figure S3: (a) SEM image of reused Pd-MOT catalyst (b) SEM image of reused Pd/Al₂O₃ catalyst

Entry	Catalyst amount	Pd-MOT		Pd/Al_2O_3	
-	(g)/Pd content (mol %)	Yield (%) ^b	Selectivity (%) ^b	Yield (%) ^b	Selectivity (%) ^b
1	0.5 (0.3)	50	100	40	100
2	1.0 (0.6)	60	100	50	100
3	1.5 (1.0)	85	100	65	100
4	2.0 (1.3)	97	100	78	100
5	2.5 (1.7)	99	100	80	100
6	3.0 (2.0)	99	100	78	100

Table S1: Comparative experimental results obtained from the coupling reaction of iodobenzene with butyl acrylate catalyzed by Pd-MOT and $Pd/Al_2O_3^{\ a}$ at different catalyst amount

^a Reaction conditions: Iodobenzene (1.0 mmol); n-butyl acrylate (1.2 mmol); potassium carbonate (2 mmol); temperature: 80 °C; reaction time: 8 h. ^b Determined from the GC analysis.

Table S2: Comparative experimental results obtained from the coupling reaction of iodobenzene with phenylboronic acid catalyzed by Pd-MOT and Pd/Al₂O₃ at different reaction time.

Entry	Reaction time	Pd-MOT		Pd/Al_2O_3	
	(hr)	<i>Yield (%)</i> ^b	Selectivity (%) ^b	$\overline{Yield} \ (\%)^b$	Selectivity (%) ^b
1	0	0	0	0	0
2	1	36	100	36	100
3	2	50	100	52	100
4	3	62	100	62	100
5	4	70	100	64	100
6	5	75	100	66	100
7	6	78	100	69	100

^aReaction conditions: Iodobenzene (1 mmol); phenylboronic acid (1.2 mmol); potassium carbonate (2 mmol); temperature: 70 °C; ^b Determined from the GC analysis.

Entry	Catalyst amount		Pd-MOT	Pd/.	Pd/Al_2O_3	
	(g)/Pd content mol?	%) <i>Yield (%)</i> ^b	Selectivity (%) ^b	Yield (%) ^b	Selectivity (%) ^b	
1	0.5 (0.3)	50	100	51	100	
2	1.0 (0.6)	73	100	60	100	
3	1.5 (1.0)	85	100	70	100	
4	2.0 (1.3)	90	100	78	100	
5	2.5 (1.7)	93	100	79	100	

Table S3: Comparative experimental results obtained from the coupling reaction of iodobenzene with phenylboronic acid catalyzed by Pd-MOT and $Pd/Al_2O_3^{a}$ at different catalyst amount

^a Reaction conditions: Iodobenzene (1 mmol); phenylboronic acid (1.2mmol); potassium carbonate (2 mmol); temperature: 70 °C; reaction time 6 hr ^b Determined from the GC analysis

Table S4: Comparative experimental results obtained from the coupling reaction of iodobenzene with phenylacetylene catalyzed by Pd-MOT and $Pd/Al_2O_3^{\ a}$ using different solvent.

Entry	Catalyst	Solvent	<i>Temperature (</i> °C)	Yield%	Selectivity%
1	Pd-MOT	EtOH	60	28	100
2	Pd/Al_2O_3	EtOH	60	29	100
3	Pd-MOT	EtOH/H ₂ O	70	75	100
4	Pd/Al_2O_3	EtOH/H ₂ O	70	60	100
5	Pd-MOT	DMF	100	46	-
6	Pd/Al_2O_3	DMF	100	46	-

^a Reaction conditions: iodobenzene (1 mmol); phenylacetylene (1.2mmol); potassium carbonate (2 mmol); temperature: 70 °C; reaction time 5 hr ^b Determined from the GC analysis

Figure S4: (a) Uv-vis spectra of the fresh catalyst (b) Uv-vis spectra of the reused catalyst