Supporting Information

Catalytic reduction of 4-nitrophenol with gold nanoparticles stabilized by large-ring cyclodextrins

Sébastien Noël,^a Hervé Bricout,^a Ahmed Addad,^b Christian Sonnendecker,^c Wolfgang Zimmermann,^c Eric Monflier^a and Bastien Léger^{*a}

^a Dr. S. Noël, Dr. H. Bricout, Prof. Dr. E. Monflier, Dr. B. Léger, Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), 62300 Lens, France.

^b Dr. A. Addad, UMET, UMR CNRS 8207, Université de Lille, 59655 Villeneuve d'Ascq, France.

^c Dr. C. Sonnendecker, Prof. Dr. W. Zimmermann, Institute of Analytical Chemistry, Leipzig University, 04103 Leipzig, Germany.

* e-mail : <u>bastien.leger@univ-artois.fr</u>

	гаде
Figure S1. Photograph of Au_LR-CD NP after reduction step in alkaline aqueous solution.	2
Figure S2. XPS spectra of Au NP stabilized by (a) α -CD, (b) β -CD, (c) γ -CD, and (d) LR-CD.	3
Figure S3 . Liquid UV-Vis spectra of (a) Au_{α} -CD NP, (b) Au_{β} -CD NP, (c) Au_{γ} -CD NP, (d) Au_{LR} -CD NP and (e) superposition of all of the UV-Vis spectra.	4
Figure S4. Successive UV-Vis spectra of Au_LR-CD NP at different time from 1h to 4h.	5
Figure S5 . Size distribution in volume of (a) Au_{α} -CD NP, (b) Au_{β} -CD NP, (c) Au_{γ} -CD NP and (d) Au_{LR} -CD NP obtained by Dynamic Light Scattering.	6
Figure S6. Scheme of the catalytic reduction of 4-nitrophenol into 4-aminophenol by Au NP in the presence of an excess of $NaBH_4$.	7
Figure S7 . UV-Vis absorption spectra during the reaction of 4-nitrophenol with NaBH ₄ without any Au NP.	7
Figure S8 . UV-Vis absorption spectra during the reduction of 4-nitrophenol with NaBH ₄ by (a) Au_ α -CD NP, (b) Au_ β -CD NP and (c) Au_ γ -CD NP.	8
Figure S9 . Determination of the k_{app} values relating to 4-nitrophenol reduction catalyzed by Au_ α -CD NP, Au_ β -CD NP, Au_ γ -CD NP and Au_LR-CD NP.	9
Figure S10 . T-ROESY spectrum of 4-nitrophenol + LR-CD mixture in D_2O considering [4-nitrophenol] = 6 mM, [LR-CD] = 6 mM and [NaBH ₄] = 0.26 M at 20 °C.	10

Dago

Figure S1. Photograph of Au_LR-CD NP after reduction step in alkaline aqueous solution.

Figure S2. XPS spectra of Au NP stabilized by (a) α -CD, (b) β -CD, (c) γ -CD, and (d) LR-CD.

Figure S3. Liquid UV-Vis spectra of (a) Au_{α} -CD NP, (b) Au_{β} -CD NP, (c) Au_{γ} -CD NP, (d) Au_{LR} -CD NP and (e) superposition of all of the UV-Vis spectra.

Figure S4. Successive UV-Vis spectra of Au_LR-CD NP at different time from 1h to 4h.

Figure S5. Size distribution in volume of (a) Au_ α -CD NP, (b) Au_ β -CD NP, (c) Au_ γ -CD NP and (d) Au_LR-CD NP obtained by Dynamic Light Scattering.

Figure S6. Scheme of the catalytic reduction of 4-nitrophenol into 4-aminophenol by Au NP in the presence of an excess of $NaBH_4$.

Figure S7. UV-Vis absorption spectra during the reaction of 4-nitrophenol with $NaBH_4$ without any Au NP.

Figure S8. UV-Vis absorption spectra during the reduction of 4-nitrophenol with NaBH₄ by (a) Au_ α -CD NP, (b) Au_ β -CD NP and (c) Au_ γ -CD NP.

Figure S9. Determination of the k_{app} values relating to 4-nitrophenol reduction catalyzed by Au_ α -CD NP, Au_ β -CD NP, Au_ γ -CD NP and Au_LR-CD NP

Figure S10. T-ROESY spectrum of 4-nitrophenol + LR-CD in D_2O considering [4-nitrophenol] = 6 mM, [LR-CD] = 6 mM and [NaBH₄] = 0.26 M at 20 °C.