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Materials
All reagents and solvents were obtained from commercial sources and used without further purification. 

Ni2P, K2FeO4, and fluorine-doped tin oxide  (FTO) were purchased from Sigma-Aldrich. Glassy carbon disk 
Working electrodes were purchased from CH Instruments. For the experiments, milli-Q water (18-20 
MΩ•cm-1 at 27 °C) was used.

Methods
SEM was carried out using an LEO 1430VP microscope. HRTEM and TEM were carried out using an FEI 

Tecnai G2 F20 transmission electron microscope, TF20 (200 kV). The X-ray powder diffraction patterns were 
recorded with a Bruker D8 Advance (Germany) diffractometer (CuKα radiation). EDX analysis/mapping was 
carried out with the scanning electron microscope CamScan 4DV (CamScan UK). X-ray photoelectron 
spectroscopy (XPS, K-ALPHA, Thermo Scientific) was used to analyze the surface of the samples. All spectra 
were collected using Al-K radiation (1486.6 eV), monochromatized by a twin crystal monochromator, 
yielding a focused X-ray spot at 3 mA × 12 kV. The alpha hemispherical analyzer was operated in the 
constant energy mode with survey scan pass energies of 200 eV to measure the whole energy band, and 
with survey scan pass energies of 50 eV in a narrow scan to selectively measure the particular elements. 
XPS data were analyzed with Avantage software. A smart background function was used to approximate 
the experimental backgrounds and surface elemental composition was calculated from background-
subtracted peak areas. Charge compensation was achieved with the system flood gun that provides low 
energy electrons and low energy argon ions from a single source. The penetration depth was around 3 nm.

Electrochemistry
Electrochemical experiments were performed using an EmStat3+ from PalmSens (Netherlands). Cyclic 

voltammetry studies were carried out with a conventional three-electrode set-up, in which FTO (or GC), 
Hg│HgO and a platinum foil served as the working, reference, and auxiliary electrodes, respectively. Pt had 
no effect on the oxygen-evolution reaction of Ni/Fe oxide (see Figure S9). The result was not surprising, 
because the onset of Ni/Fe oxide was lower than Pt/Fe. All the potentials in this project were reported vs. 
RHE. The distance between two opposite sides of the FTO electrode was measured by a digital caliper 
MarCal 16ER model (Mahr, Germany). For Fe-free experiments, a polypropylene container was used instead 
of a standard cell. H2SO4 (6.0 M) in the polypropylene container was stirred for one hour and then carefully 
washed by water. 

Electrode preparation 
   The commercial Ni2P (4.0 mg) was dispersed as a mixture solution of H2O (0.5 ml) and 5% Nafion (20 

µl). A measure of the above suspension (50 µl) was drop-casted onto a pre-polished FTO electrode (1 cm2), 
and dried at 50 °C for 30 min for the solvent to evaporate.

Conversion 
A procedure introduced by Allen J. Bard was used to track the stability of Ni2P under the electrochemical 

water-oxidation conditions [1]. In this method, the experiment was performed by a convective-suspension-
collision technique, in which Ni2P (100.0 mg) was suspended in an electrolyte (100 ml, KOH 1.0 M). It was 
continuously stirred such that the particles collided with a working electrode at ambient temperature at 
1.79 V (V vs. RHE) for three days. The electrolyte was KOH (1.0 M), an Hg|HgO served as the reference 
electrode and a platinum sheet as an auxiliary electrode. Another platinum sheet was used as a working 
electrode. The experiment was performed using an HA-151 potentiostat-galvanostat (Hokuto Denko 
(Japan)). The set-up for the conversion procedure is shown in Scheme S2.
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Scheme S1 Set-up for the electrochemical experiments.

Scheme S2 Set-up for the conversion procedure. The set-up was used to obtain samples for 
HRTEM and NMR.
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Figure S1 CVs for a bare FTO in KOH (0.10 M) before (blue) and after (red) adding Fe salt (scan 
rate: 100 mV/s).
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Figure S2 CVs for a bare FTO contains Nafion in KOH (0.10 M) before (blue) and after (red) adding 
Fe salt (scan rate: 100 mV/s).
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Figure S3 LSVs of Ni2P in KOH (0.10 M) in the absence (blue) and the presence (red) of Fe salt at 
different scan rates.
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Figure S4 SEM images (at different magnifications) of the covered commercial Ni2P on the surface 
of FTO by Nafion in the absence of potential.
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Figure S5 SEM images (at different magnifications) of the commercial Ni2P on the surface of FTO 
after the consecutive 250 CVs in KOH (0.10 M): Range: 1.0-1.75V; scan rate: 100 mV/s.



S11

Figure S6 SEM images (at different magnifications) of the commercial Ni2P on the surface of FTO 
after the consecutive 250 CVs in KOH (0.10 M) and then another 250 CVs in the presence of Fe 
salt. Range: 1.0-1.75V; scan rate: 100 mV/s.
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Figure S7 31P NMR of the commercial Ni2P on the surface of Pt after the operation in KOH (1.0 M) 
(for the details of the preparation of sample, see Scheme S2). 
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Figure S8 HRTEM images (at different magnifications) of the commercial Ni2P on the surface of Pt 
after the operation in KOH (1.0 M) (for the details of the preparation of sample, see Scheme S2).
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Figure S9 The effect of Pt salt (tetraammineplatinum(II) nitrate (99.995%, Sigma-Aldrich) 
on the OER of Ni oxide in the presence of Fe (saturated in the electrolyte) in a commercial 
KOH electrolyte solution (1.0 M). The blue and red CVs are related to Ni electrode in the 
absence (blue) and the presence of Pt salt (total concentration: 16 ppm) (red). The 
counter electrode was a graphite rod (diameter: 5.4 mm; length: 13 mm).
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Table S1 Comparison of some heterogeneous water-oxidizing catalysts. 
Compound η[a] (mV) η[b] (mV)       pH         Ref.[d]

Ni2P/NiOx/Fe     217  287 13 This Work
NiFeOx - 297 14 2

NiOx > 400 > 1000 14 3

NiOx - 300 14 2

CoOx - 381 14 2

NiCoOx - 312 14 2

FeOx 345 445 14 4

FeOx - 405 14 2

Fe2O3 < 350 430 14 5

MnOx 320 514 14 2

Fe3Ni2Ox 270 - 13 6

FeNiOx 211 - 13 7

Fe2Ni3Ox 190 250 13 8

NiOx 191 280 13 7

NiOx 295 - 13 9

CoFeOx
[c] 397 - 13 10

CoOx < 200 < 250 13 11

FeOx 320 410 13 7

CoOx 210 270 13 7

CoOx 295 - 13 6

FeCoOx 181 - 13 7

FeCoNiOx 191 - 13 7

Ni2FeAlOx 270 - 13 6

NiFeMo3Ox 250 - 13 6

Ni2FeCr2Ox 240 - 13 6

NiFeGa3Ox 240 - 13 6

CoSe2 373 380 13 12

NG-CoSe2 294 320 13 12

MnOx < 300 > 1000 >11.5 13

FeOOH 300 420 11 14

NiBi 300 425 9.2 15

MnOx < 300 > 1000 8.5-5.5 13

CoOx < 200 < 300 7 11

MnOx 390 590 7 16

MnOx 441 600 7 17

CoFePBA 291 > 600 7 18

MnOx 150 > 1000 7 19

CoPi 281 410 7 20

MnOx > 700 > 1000 7 21

LixMnP2O7 500 - 7 22

MnOx < 300 > 1000 3.5 13

Co2+ (1 M) < 580 600 1 11

[a] Onset overpotentiol. 
[b] @1 mAcm-2. 
[c] LDH.
[d] For an excellent review, see ref. 23
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