Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Support information

Theoretical investigation on the catalytic mechanisms of oxygen reduction and carbon monoxide oxidation on MnNx system

Mingming Luo,^a Zhao Liang,^a Mingwei Chen,^a Chao Liu,^{a,b} * Xiaopeng Qi,^a Shaik Gouse Peera,^c Juan

Liu,^d Tongxiang Liang^{a,*}

- ^a Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou
 341000, China
- ^b State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- ^c Department of Environmental Science and Engineering, Keimyung University, Daegu 42601, Republic of South Korea
- ^d Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A0C5, Canada
- * Corresponding Authors.

E-mail address: liuchao198967@126.com (Chao Liu) and liang_tx@126.com (Tongxiang Liang).

Fig. S1. The measured height of the Mn atom with respect to the graphene basal plane.

	Electrophilic	Nucleophilic		Electrophilic	Nucleophilic
MnC ₃			MnNC ₂		
MnN ₂ C			MnN ₃		
MnC ₄			MnNC ₃		
MnN ₂ C ₂ -opp			MnN ₂ C ₂ -hex		
MnN ₂ C ₂ -pen			MnN ₃ C		
MnN ₄					

Fig. S2. The Fukui function of MnN_x , the isosurface value is 4 e/Å³.

Table S1. Optimized models of different MnNx configurations and their corresponding ideal *OOH, *O and *OH

adsorption configurations.

Pristine	*O	*OH	*OOH

MnC ₃	Тор				
	Side	000000000		000000000	
MnNC ₂	Тор				
	Side	000000000		000000000	
MnN ₂ C	Тор				
	Side	00000000	000000000	000000000	000000000
MnN ₃	Тор				
	Side	000000000	000000000	000000000	
MnC ₄	Тор				
	Side	000000000	000000000		
MnNC ₃	Тор				
	Side	00000000	00000000	000000000	
MnN ₂ C ₂ -opp	Тор				
	Side	00000000	000000000	00000000	eeee000000
MnN ₂ C ₂ -hex	Тор				
	Side	000000000	000000000	000000000	
MnN ₂ C ₂ -pen	Тор				
	Side	00000000	000000000	00000000	00000000
MnN ₃ C	Тор				

	Side	00000000	000000000	000000000	00000000
MnN4	Top Side			*****	*****
				000000000	000000000

Table S2. Adsorption free energy (ΔG_{ads} , eV) of ORR intermediates (OOH, OH and O) in MnN_x

Structures	G*OOH	G*0	G*OH
MnC ₃	1.877	-0.060	-1.317
MnNC ₂	1.633	-0.846	-1.347
MnN_2C	-	-1.062	-1.281
MnN ₃	-	-1.280	-1.277
MnC ₄	2.516	-0.464	-0.644
MnNC ₃	2.660	0.031	-0.426
MnN ₂ C ₂ -opp	2.634	0.070	-0.362
MnN ₂ C ₂ -hex	2.736	0.237	-0.279
MnN ₂ C ₂ -pen	2.634	0.015	-0.211
MnN ₃ C	2.727	0.367	-0.243
MnN ₄	2.996	0.629	0.019

Table S3. Free energy variations (eV) of the ORR pathways for MnN_x structures and their corresponding

Structures	ΔG_1	ΔG_2	ΔG_3	ΔG_4	η
MnC ₃	-3.043	-1.938	-1.257	1.317	2.547
MnNC ₂	-3.287	-2.479	-0.500	1.347	2.577
MnN ₂ C	-5.539	-0.443	-0.219	1.281	2.511
MnN ₃	-5.433	-0.767	0.002	1.277	2.507
MnC ₄	-2.404	-2.980	-0.180	0.644	1.874
MnNC ₃	-2.260	-2.629	-0.457	0.426	1.656
MnN ₂ C ₂ -opp	-2.286	-2.564	-0.432	0.362	1.592

theoretical overpotentials (V)

-

MnN ₂ C ₂ -hex	-2.184	-2.500	-0.516	0.279	1.509
MnN ₂ C ₂ -pen	-2.118	-2.787	-0.227	0.211	1.441
MnN ₃ C	-2.193	-2.360	-0.610	0.243	1.473
MnN_4	-1.924	-2.367	-0.610	-0.019	1.211

Fig. S3. The free energy (eV) diagrams of ORR pathways on three-coordinate structures. (a) MnC₃, (b) MnNC₂, (c) MnN₂C, (d) MnN₃.

Fig. S4. The free energy diagrams of ORR pathways on four-coordinate structures. (a) MnC₄, (b) MnNC₃, (c) MnN₂C₂-opp, (d) MnN₂C₂-hex, (e) MnN₂C₂-pen, (f) MnN₃C, (g) MnN₄.

Fig. S5. The most stable adsorption configurations of the ORR intermediates on the MnN₃, ΔE_{ads} is the adsorption energy (eV).

Fig. S6. The most stable adsorption configurations of the ORR intermediates on the MnN₄, ΔE_{ads} is the adsorption energy (eV).

Fig. S7. The structural change of side- O_2^1 comes from the molecular dynamics of 300 K.

Fig. S8. The structural change of HOOH comes from the molecular dynamics of 300 K.

Fig. S9. The reaction pathway for ORR on MnN_3 and MnN_4 , the best path is marked with blue arrow. The numbers in parenthesis are imaginary frequencies (cm⁻¹) of transition states. * denotes that the ORR intermediate is adsorbed on the catalyst surface.

Fig. S10. Structures for the most favorable ORR pathway on MnN_3 . From left to right in each row: initial state, transition state and final state, the transition state structure is selected with dashed frame. E_{bar} represents reaction barrier (eV) and E_{rea} represents reaction energy (eV).

Fig. S11. Structures for the most favorable ORR pathway on MnN₄. From left to right in each row: initial state, transition state and final state, the transition state structure is selected with dashed frame. E_{bar} represents reaction barrier (eV) and E_{rea} represents reaction energy (eV).

Fig. S12. The structural change of O₂ comes from the molecular dynamics of 300 K.

Models	$\Delta E_{ads}(CO)$	$\Delta E_{ads}(O_2)$	$\Delta E_{ads}(O_2+CO)$
MnC ₃	-1.506	-2.324	-2.749
MnNC ₂	-1.864	-2.987	-3.393
MnN ₂ C	-1.899	-3.457	-4.103
MnN ₃	-1.912	-3.182	-4.344
MnC ₄	-1.205	-2.048	-2.339
MnNC ₃	-1.331	-1.972	-2.276
MnN ₂ C ₂ -Hex	-1.448	-1.778	-2.490
MnN ₂ C ₂ -Opp	-1.318	-1.975	-2.283
MnN ₂ C ₂ -Pen	-1.424	-1.655	-2.327
MnN ₃ C	-1.460	-1.758	-2.135
MnN ₄	-1.389	-1.449	-1.341

Table S4. The adsorption energies (eV) of O_2 , CO and O_2 + CO on MnN_X .

Fig. S13. The molecular dynamics simulation of (a) MnC₃, (b) MnNC₂, (c) MnN₂C, (d) MnN₃ adsorbing CO₂ at 300 K.

Table S5. Imaginary frequencies (cm⁻¹) information of CO oxidation along various mechanisms on MnN₄.

	TS1	TS2
ER	-596.97	-392.29
*O ₂ →2*O	-593	.22
$*O_2+CO \rightarrow *O+CO_2$	-567	7.8
NER	-268.92	-154.22
LH	-328.09	-394.08

$O+CO\rightarrow CO_2$	-615	.65
TER	-46.13	-653.94