Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Insensitive Energetic Compounds: Alkaline Earth Metal Salts of 5,5'-

dinitramino-3,3'-methylene-1H-1,2,4-bistriazolate

Yanna Wang^{a,b}, Xiaoming Yang^a, Jie Hu^b, Haibo Li^a, Zhimin Li^{*a}, Tonglai Zhang^{*a}

^a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,

Beijing, China; ^b College of Chemistry and Chemical Engineering, Xingtai University, Xing tai,

China

*Corresponding author: Tonglai Zhang and Zhimin Li Email: Tonglai Zhang: <u>ztlbit@bit.edu.cn</u> Zhimin Li: <u>lizm@bit.edu.cn</u>

Table of contents

- 1. Crystal data and structure refinement details of compounds 1-3
- 2. X-ray crystallography
- 3. The distances of hydrogen bonds of compounds 1-3
- 4. The first exothermic decomposition peak temperature with four

heating rates

- 5. Non-isothermal kinetics analysis
- 6. The calculation of thermodynamics parameters
- 7. References

Compound	1	2	3
Formula	$C_5H_{18}MgN_{10}O_{11}$	$C_{10}H_{44}Ca_2N_{20}O_{26}$	$C_{10}H_{34}N_{20}O_{21}Sr_2$
M (g·mol ⁻¹)	418.60	940.81	945.81
Cryst. Syst.	monoclinic	monoclinic	orthorhombic
Space Group	P21/c	P21/n	Pbca
<i>a</i> (Å)	10.8475	20.6915	17.068(3)
<i>b</i> (Å)	8.7335	8.2319	17.764(4)
<i>c</i> (Å)	17.6426	21.7079	21.772(4)
β (deg.)	91.275	91.831	90
V (Å ³)	1671.0(6)	3695.6(13)	6601(2)
Ζ	4	4	8
ρ (g·cm ⁻³)	1.664	1.691	1.903
F(000)	872	1968	3824
Index ranges	-13≤ <i>h</i> ≤14	-26 <i>≤h≤</i> 25	-19 <i>≤h≤</i> 22
	- 11≤k≤10	-10 <i>≤k</i> ≤10	-23 <i>≤k</i> ≤18
	-21 <i>≤l</i> ≤22	-28 <i>≤l≤</i> 28	-28 <i>≤l</i> ≤18
Reflections collected	3801	8280	7535
Independent reflections	3550	6822	6087
Rint.	0.0387	0.0465	0.0619
R1 I>2 $\sigma(I)$) ^a	0.0490	0.1230	0.0760
R1 (all data)	0.0533	0.1412	0.0972
wR2 (I>2o(I)) ^a	0.1096	0.2810	0.1284
wR2 (all data)	0.1126	0.2933	0.1368
CCDC number	1888530	2014336	2014337

Table S1 X-ray crystallographic data for compounds 1-3

2. X-ray crystallography

Table S2 Selected bond lengths (Å) and bond angles (°) of compound 1

Selected bond	lengths (Å)				
Mg1- O10	2.0802(16)	Mg1- O5	2.0874(15)	Mg1-08 2.03	51(17)
Mg1- O7	2.0603(16)	Mg1- 06	2.0605(17)	Mg1-O9 2.05	48(18)
Selected bond an	ngles (°)				
O7- Mg1- O9	95.09(7)	O5- Mg1- O6	90.32(7)	O6- Mg1- O7	85.41(7)
O7- Mg1- O10	169.86(7)	O5- Mg1- O7	93.78(7)	O6- Mg1- O8	98.70(7)
O8- Mg1- O9	87.35(7)	O5- Mg1- O8	170.51(8)	O6- Mg1- O9	173.93(7)

O8- Mg1- O10	87.91(7)	O5- Mg1- O9	83.61(7)	O6- Mg1- O10	85.13(7)
O9- Mg1- O10	94.70(7)	O5- Mg1- O10	89.93(7)	O7- Mg1- O8	89.91(7)

Table S3 Selected bond lengths (Å) and bond angles (°) of compound $\mathbf{2}$

Selected bond	l lengths (Å)				
Ca1-O14	2.604(4)	Ca1-O20	2.434(6)	Ca2-O11	2.467(6)
Ca1-O16	2.553(5)	Ca1-O21	2.472(5)	Ca2 -O12	2.475(4)
Ca1-O17	2.389(5)	Ca1-O22	2.362(5)	Ca2-O13	2.440(6)
Ca1-O18	2.458(5)	Ca2-O9	2.377(5)	Ca2-O14	2.567(5)
Ca1-O19	2.493(4)	Ca2-O10	2.458(5)	Ca2-O15	2.397(5)
Selected bond	angles (°)				
Ca1-O14-Ca2	110.74(17)	O11-Ca2-O1	5 143.14(17)	O14-Ca1-O21	75.72(15)
Ca1-O16-Ca2	110.88(17)	O11-Ca2-O10	6 139.19(18)	O16-Ca1-O17	81.37(16)
O9-Ca2-O10	82.83(16)	O14-Ca2-O1	5 79.84(16)	O16-Ca1-O20	121.27(15)
O9-Ca2-O15	97.60(16)	O15-Ca2-O10	6 72.70(15)	O18-Ca1-O21	117.14(16)
O9-Ca2-O14	143.41(15)	014-Ca1-019	9 129.54(15)	O20-Ca1-O21	68.63(17)

Table S4 Selected bond lengths (Å) and bond angles (°) of compound ${\bf 3}$

Selected bond lengths (Å)		
Sr1-O1 2.692(4)	Sr1-N2 2.837(4)	Sr2-O15 2.572(4)
Sr1-O9 2.603(5)	Sr1-O4 2.690(4)	Sr2-O16 2.555(5)
Sr1-O10 2.638(4)	Sr1-N9 2.773(4)	Sr2-O17 2.644(4)
Sr1-O11 2.688(4)	Sr2-O11 2.684(3)	Sr2-O18 2.553(5)
Sr1-O12 2.481(5)	Sr2-O13 2.650(4)	Sr2-O19 2.654(4)
Sr1-O13 2.648(4)	Sr2-O14 2.582(5)	
Selected bond angles (°)		
O1-Sr1-O9 81.19(13)	O4-Sr1-N9 47.23(12)	O1-Sr1-N2 46.30(11)
O9-Sr1-O10 154.35(14)	O9-Sr1-O11 126.53(13)	O9-Sr1-O12 77.84(17)
O11-Sr1-O13 70.46(10)	O10-Sr1-O11 68.74(11)	O10-Sr1-O12 127.69(14)
O11-Sr2-O13 70.48(10)	O11-Sr2-O14 83.73(13)	O11-Sr2-O16 134.66(14)
O11-Sr2-O17 145.78(11)	O13-Sr2-O14 133.49(14)	O13-Sr2-O15 89.33(11)
O13-Sr2-O17 142.55(11)	O13-Sr2-O18 77.86(13)	O13-Sr2-O19 136.41(14)
O14-Sr2-O15 76.40(14)	014-Sr2-O16 141.57(16)	O14-Sr2-O17 75.20(14)

3. The distances of hydrogen bonds of compounds 1-3

[Mg(H ₂ O) ₆](DNAM7	T)•H ₂ O (1)			
D-H··· A	d(D–H)	d(H···A)	d(D····A)	∠DHA
N4-H4…O1	0.8500	2.1200	2.578(2)	113.00
N4-H4····O4	0.8500	2.1200	2.935(2)	159.00
N7-H7…O4	0.8500	2.0800	2.545(2)	114.00
N7-H7…O1	0.8500	2.0500	2.852(2)	156.00
O7-H7···O10	0.8400	2.2000	3.017(2)	165.00
09-Н9…02	0.8400	1.9600	2.792(2)	169.00
09-Н9…03	0.8400	1.9300	2.760(2)	167.00
O10-H10····O11	0.8400	1.9200	2.752(2)	169.00
011-Н11…02	0.8400	1.9700	2.791(2)	166.00
$[Ca_2(H_2O)_{14}](DNAM$	T_{2} ·4H ₂ O (2)			
D-H··· A	d(D–H)	d(H···A)	d(D····A)	∠DHA
N3-H3…O2	0.8800	2.0600	2.558(7)	115.00
N3-H3…O6	0.8800	2.0700	2.770(7)	136.00
N8-H8…O4	0.8800	2.0400	2.542(6)	115.00
N8-H8…O8	0.8800	2.1000	2.832(6)	141.00
N18-H18…O8	0.8800	2.0400	2.541(7)	116.00
N18-H18…O2	0.8800	2.1700	2.855(7)	134.00
N13-H13…O6	0.8800	2.0500	2.544(6)	115.00
О9-Н9А…О23	0.8400	2.0600	2.893(6)	174.00
O10-H10B…O25	0.8400	1.9800	2.818(7)	176.00
O11-H11A…O3	0.8400	2.0100	2.810(6)	160.00
O11-H11B…O3	0.8400	2.3200	3.122(7)	159.00
O12-H12B…O1	0.8400	2.0600	2.890(6)	169.00
O18-H18B…O5	0.8400	1.9700	2.806(6)	174.00
O20-H20A…O5	0.8700	2.4200	3.207(7)	151.00
O22-H22A…O26	0.8400	2.2100	2.995(8)	156.00
[Sr ₂ (DNAMT)(H ₂ O)]	1](DNAMT)·2H2	O (3)		
D-H ····A	d(D–H)	d(H···A)	d(D···A)	∠DHA
N4-H4…O2	0.8500	2.2100	2.600(5)	108.00
N7-H7…O3	0.8500	2.2200	2.580(6)	105.00
N7-H7…O7	0.8500	2.0700	2.900(6)	167.00
O9-H9B…O8	0.8400	2.0300	2.798(6)	152.00
O13- H13B…O20	0.8400	2.0500	2.858(5)	161.00
N14-H14…O6	0.8500	2.0400	2.539(6)	117.00

Table S5 Hydrogen bond lengths / Å and angles / $^{\rm o}$ of compound 1-3

N14-H14…O2	0.8500	2.2100	3.003(6)	156.00
O15-H15B…O10	0.8400	2.5400	3.058(5)	121.00
O16-H16A…O3	0.8400	2.6000	3.239(6)	134.00
O16-H16A…O4	0.8400	2.1400	2.969(6)	169.00
N17-H17…O7	0.8500	2.0000	2.561(6)	123.00
N17-H17····O3	0.8500	2.2500	3.013(6)	149.00
O17-H17A…O1	0.8400	2.2600	3.050(5)	157.00
O19-H19B…O1	0.8400	2.0700	2.861(5)	157.00
O19-H19B…O2	0.8400	2.5800	3.319(5)	147.00
O20-20B…O5	0.8400	2.0000	2.832(5)	169.00

4. The first exothermic decomposition peak temperature with four heating rates

 Table S6 The first exothermic decomposition peak temperatures tested at different heating rates of compounds 1-3

aamnaund	The first exothermic decomposition peak temperatures (K)					
compound	5K·min ⁻¹	10K·min ⁻¹	15K·min ⁻¹	20K·min ⁻¹		
1	537.65	542.95	547.05	549.25		
2	554.85	556.55	561.75	56.955		
3	578.55	586.15	590.85	595.65		

5. Non-isothermal kinetics analysis

The peak temperatures of first decomposition processes were used to calculated kinetics parameters (apparent activation energies (*E*a) and the pre-exponential factor (A)), by Kissinger's method ¹ (Eq. (1)) and Ozawa's method ² (Eq. (2)).

$$ln\frac{\beta}{T_p^2} = ln\frac{AR}{E_a} - \frac{E_a}{RT_p}$$
(1)

$$\lg\beta + 0.4567 \frac{E_a}{RT_p} = C$$
 (2)

Where, T_p is the peak temperature (K), R is the gas constant 8.314 (J·mol⁻¹·K⁻¹), β is the linear heating rate (°C·min⁻¹), C is a constant, E_a is the average of E_k and E_o (kJ·mol⁻¹). The results are listed in Table S7.

Table S7 Non-isothermal reaction kinetics parameters of compounds 1 - 3

compound	Kissinger's method	Ozawa's method	$Ea/kJ \cdot mol^{-1}$
----------	--------------------	----------------	------------------------

	$E_{\rm K}/{\rm kJ}\cdot{\rm mol}^{-1}$	$\lg A_{\rm K}$	$R_{\rm K}$	$E_{\rm O}/{\rm kJ}\cdot{\rm mol}^{-1}$	R _O	
1	66.90	11.2	-0.99	67.89	-0.99	67.39
2	65.09	10.1	-0.91	66.44	-0.92	65.76
3	64.10	8.46	-0.99	64.01	-0.99	64.06

6. The calculation of thermodynamics parameters

The thermodynamics parameters $(T_{p0}, T_b, \Delta S^{\ddagger}, \Delta H^{\ddagger}, \Delta G^{\ddagger})$ were obtained by the Zhang's calculation equations ³ and the results list in Table S8. The equations for these calculations are as follows:

$$T_{Pi} = T_{P0} + a\beta + b\beta^2 + c\beta^3 \tag{3}$$

$$T_b = (E_k - \sqrt{E_k^2 - 4E_k R T_{P0}})/2R$$
(4)

$$A = (k_B T_{P0}/h) exp^{[m]} (1 + \Delta S^{\neq}/R)$$
(5)

$$\Delta H^{\neq} = E_k - RT_{P0} \tag{6}$$

$$\Delta G^{\neq} = \Delta H^{\neq} - T_{P0} \Delta S^{\neq} \tag{7}$$

where *a*, *b*, and *c* are coefficients, $k_{\rm B}$ is the Boltzmann constant (1.381×10⁻²³ J·K⁻¹) and *h* is the Planck constant (6.626×10⁻³⁴ J·s). T_b is the critical temperature of thermal explosion, T_{p0} is the peak temperature corresponding to $\beta \rightarrow 0$, ΔS^{\neq} is activation entropy, ΔH^{\neq} is activation enthalpy and ΔG^{\neq} is free energy of activation.

Table S8 Calculation of critical temperatures of thermal explosion, ΔS^{\neq} , ΔH^{\neq} and ΔG^{\neq}

compound	T _{p0} /K	T _b /K	$\Delta S^{\neq}/J \cdot K^{-1} \cdot mol^{-1}$	$\Delta H^{\neq}/kJ \cdot mol^{-1}$	$\Delta G^{\neq}/\text{kJ·mol}^{-1}$
1	531.85	572.59	-35.31	62.48	81.26
2	560.15	607.25	-56.80	60.43	92.25
3	565.05	613.94	-88.27	59.40	109.28

7. References

- 1 H. E. Kissinger, Anal. Chem., 1957, 29, 1702–1706.
- 2 T. Ozawa, Bull. Chem. Soc. Jpn., 1965, 38, 1881–1886.
- 3 T. Zhang, R. Hu, X. Yi and F. Li, Thermochim. Acta, 1994, 244, 171-176.