Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## Electrochemically grown MnO<sub>2</sub> nanowires for dual viz., supercapacitor and electrocatalysis applications

Siddheshwar D. Raut<sup>†</sup>, Hrishikesh R. Mane<sup>§</sup>, Nanasaheb. M. Shinde<sup>‡</sup>, Damin Lee<sup>§</sup>, Shoyebmohamad F. Shaikh<sup>¥</sup>, Kwang-Ho Kim<sup>‡</sup>, Hee-Je Kim<sup>&</sup>; Abdullah M. Al-Enizi<sup>¥\*</sup>, Rajaram S. Mane<sup>†\*</sup>

<sup>†</sup>School of Physical Sciences, S. R. T. M. University, Nanded-431501, (MS) India

<sup>§</sup>Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, 5, Drienerlolaan, 7522 NB Enschede, Netherlands

<sup>‡</sup>National Core Research Centre for Hybrid Materials Solution, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea

<sup>§</sup>School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea

<sup>&</sup>Department of Electrical Engineering, Pusan National University, 30, Jangjeon dong, Geumjung-gu, Busan 609-735, Republic of Korea

<sup>¥</sup>Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

**\*Corresponding authors:** rajarammane70@srtmun.ac.in (R. S. Mane, Prof.), and amenizi@ksu.edu.sa (A. M. Al-Enizi, Prof.)

## Formulae used

The specific capacitance of the prepared MnO<sub>2</sub> electrode has been calculated using the formula,

$$C = \frac{I \times \Delta t}{m \times \Delta V} \tag{1}$$

The energy and power densities have been calculated using the formulae,

$$E = \frac{C \times (\Delta V)^2}{7.2} \tag{2}$$

$$P = \frac{3600 \times E}{\Delta t} \tag{3}$$

Where,

I-Applied current (A),

 $\Delta$ t-Discharge time (s),

m- Active mass of the electrode material (g),

 $\Delta V$ - Operating voltage window (V).

C- Specific capacitance,

E- Energy density (Whkg<sup>-1</sup>), and P- Power density (Wkg<sup>-1</sup>).

The potential towards reversible hydrogen electrode (RHE) has been determined using the Nernst equation,

$$E_{RHE} = E_{\rm Hg/Hg0} + 0.059 \times pH + E^{0}_{\rm Hg/Hg0}$$
(4)

Where,  $E_{RHE}$  is the converted potential versus an RHE,  $E_{Hg/Hg0}^{0}$  = 0.098 at room temperature (27 °C) and  $E_{Hg/Hg0}$  is the experimental measured potential versus Hg/Hg0 reference electrode. The over potential ( $\eta$ ) has been calculated using the following equation:

$$\eta = E_{RHE} - 1.23 \tag{5}$$

where,  $\eta$  and  $E_{RHE}$  are the over and converted potentials, respectively.

The Tafel slope has been determined using the equation,

$$\eta = b \log j + a \tag{6}$$

where, b is the Tafel slope and a is the fitting parameter.





Figure S1: FE-SEM images of 3-D NF and  $MnO_2$  nanowires with various magnifications.

**Figure S2:** Images of steps implicated while formulating  $MnO_2//MnO_2$  SSC device; (a)  $MnO_2$  film deposited on 3D-NF, (b) Plastic cylindrical tube, (c) device, (d) Charging panel, and (e) Actual demonstration lighting the LED using SSC device.