Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Enhancing the selectivity of Pd/C catalyst for the direct synthesis of H₂O₂ by HNO₃ pretreatment

Wuyang Liang^{1,2}, Jinfeng Dong^{1,2}, Mengqin Yao^{1,2}, Jingsong Fu^{1,2,3}, Honglin Chen^{1,#},

Xiaoming Zhang^{1,*}

¹Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu

610041, Sichuan, China

² University of Chinese Academy of Sciences, Beijing 100049, China

³ College of Chemistry and Materials Science, Sichuan Normal University. Chengdu

610068, Sichuan, China

The ORCID ID of Wuyang Liang: 0000-0002-7799-7342

***Corresponding author:** Honglin Chen

Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences

No. 9, Section 4, Renmin South Road, Chengdu, Sichuan, 610041, PR China

Email address: hlchen@cioc.ac.cn

*Corresponding author: Xiaoming Zhang

Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences

No. 9, Section 4, Renmin South Road, Chengdu, Sichuan, 610041, PR China Email address: xm.zhang@cioc.ac.cn

Catalyst	Pd content ^a	H ₂ O ₂ selectivity	H ₂ conversion	H ₂ O ₂ productivity ^b
	(wt%)	(%)	(%)	$(mol H_2O_2/kg_{cat}\cdot h)$
Pd/C-0%	0.98	64	22	70
Pd/C-2%	1.02	68	17	57
Pd/C-5%	0.98	70	15	49
Pd/C-10%	0.96	84	10	44
Pd/C-20%	0.93	90	8	36
Pd/C-0%T°	0.99	46	18	39
Pd/C-2%T ^c	1.01	46	12	27
Pd/C-5%T ^c	1.02	49	9.2	21
Pd/C-10%T ^c	0.99	52	7.6	16
Pd/C-20%T ^c	0.95	50	4.5	12
Pd/C-0%H ^d	/	/	/	2.9
Pd/C-2%H ^d	/	/	/	2.8

Table S1. Catalytic performances of the original and H₂ reduced Pd/C-A% series catalysts.

^a Pd content was tested by ICP-MS. ^b H₂O₂ synthesis experiment conditions: H₂:O₂:N₂ = 9:18:33 (total flow rate 60 ml/min), 80 ml H₂O and 20 ml ethanol, 1 ml 10 wt% H₂SO₄ and 1ml 0.1 mol/L KBr, 25 °C, atmosphere, 2000 rpm, 1h. ^c 400 °C H₂ reduced Pd/C-A% series catalysts. H₂ 20 ml/min, N₂ 20 ml/min, ramp 5 °C/min, 5 h. H₂ was fed along with N₂ at ambient temperature. ^d 400 °C H₂ reduced Pd/C-A% series catalysts. H₂ 20 ml/min, N₂ 20 ml/min, N₂ 20 ml/min, ramp 5 °C/min, 5 h. H₂ was fed along with N₂ at ambient temperature. ^d 400 °C H₂ reduced Pd/C-A% series catalysts. H₂ 20 ml/min, N₂ 20 ml/min, ramp 5 °C/min, 5 h. H₂ was fed when the temperature rose to 400 oC in N₂ atmosphere.

Catalyst	H ₂ O ₂ selectivity	H_{a} conversion (%)	H ₂ O ₂ productivity (mol
	(%)		$H_2O_2/kg_{cat} \cdot h)$
Pd/C-0%	64	22	70
Pd/C-250	65	15	48
Pd/C-300	57	13	38
Pd/C-350	58	6.9	23
Pd/C-400	/	< 2	3.1

Table S2. Catalytic performances of N2-calcinated Pd/C-0% series catalysts.

Catalyst prepared by calcinating Pd/C-0% in N_2 at different temperatures. E.g. Pd/C-250 the number

"250" means this catalyst was prepared by calcinating Pd/C-0% in N_2 at 250 $^{\rm o}C$ for 5 h.

Catalyst	Fresh catalyst (wt%)	Spent catalyst (wt%)	Solution (mg/L)
Pd/C-0%	0.98	1.01	< 0.02
Pd/C-2%	1.02	0.99	< 0.02
Pd/C-5%	0.98	0.96	< 0.02
Pd/C-10%	0.96	0.98	< 0.02
Pd/C-20%	0.93	0.95	< 0.02

Table S3. Pd content in the fresh and spent catalyst.

Pd content was tested by ICP-MS.

Table S4. H_2O_2 decomposition and hydrogenation capacities of the HNO₃-pretreated and N₂calcinated activated carbons.

Material	H ₂ O ₂ decomposition rate (mol	H ₂ O ₂ hydrogenation rate (mol	
	$H_2O_2/kg_{cat}\cdot h)$	$H_2O_2/kg_{cat}\cdot h)$	
AC-0%	11	23	
AC-2%	10	21	
AC-5%	10	19	
AC-10%	9.5	21	
AC-20%	9.8	20	
AC-2%C	11	20	
AC-5%C	12	22	
AC-10%C	11	22	
AC-20%C	13	23	

E.g. AC-2%C: 400 °C N₂ calcinated AC-2%, so do the others. H_2O_2 decomposition experiment conditions: N₂ flow rate 60 ml/min, 100 ml 0.5 wt% H₂O₂, 1 ml 10 wt% H₂SO₄, 1ml 0.1 mol/L KBr, 25 °C, atmosphere, 2000 rpm, 1h. H₂O₂ hydrogenation reaction conditions: $H_2:N_2 = 9:51$ (total flow rate 60 ml/min), 100 ml 0.5 wt% H₂O₂, the other conditions were same as H₂O₂ decomposition experiment.

Fig. S1. Cl 2p XPS spectra of HCl treated AC and 400 °C N₂ calcinated AC. (a) Water rinsed AC after HCl pretreatment, (b) 400 °C N₂ calcinated (a).

Fig. S2. N_2 adsorption-desorption isotherms of activated carbons. (a) HNO₃-pretreated AC; (b) 400 °C N_2 calcinated (a); (c) N_2 calcinated AC-20%.

Fig. S3. Pd 3d XPS spectra of the original and H₂ reduced Pd/C-0%. Pd/C-0%T: 400 $^{\circ}$ C H₂ reduced Pd/C-0%. H₂ 20 ml/min, N₂ 20 ml/min, ramp 5 $^{\circ}$ C/min, 5 h. H₂ was fed along with N₂ at ambient temperature.

Fig. S4. TEM micrographs of the original and H₂ reduced Pd/C-0%. Pd/C-0%-T: 400 °C H₂ reduced Pd/C-0%. H₂ 20 ml/min, N₂ 20 ml/min, ramp 5 °C/min, 5 h. H₂ was fed along with N₂ at ambient temperature. Pd/C-0%-H: 400 °C H₂ reduced Pd/C-0%. H₂ 20 ml/min, N₂ 20 ml/min, ramp 5 °C/min, 5 h. H₂ was fed when the temperature rose to 400 oC in N₂ atmosphere.

Fig. S5. TEM micrographs of the N₂-calcinated Pd/C-0% series catalysts. The suffix number means the N₂ calcination temperature.