Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI) for

Colorimetric detection of creatinine using its specific binding peptides and gold nanoparticles

Shuaihui Feng^{a,1}, Rongjia Shi^{a,1}, Ping Xu^a, Jigna R. Bhamore^a, Jyotiranjan Bal^a, Seung Hoon Baek^a, Chan Yeong Park^a, Jong Pil Park^b and Tae Jung Park^{*a}

^{a.}Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.

^{b.}Department of Food Science and Biotechnology, School of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea.

Corresponding author:

*E-mail address: tjpark@cau.ac.kr (T.J. Park)

¹These authors equally contributed to this work.

Scheme S1. Schematic diagram of BSA-Creatinine screening method by phage-display technology.

Fig. S1. The agarose gel image against BSA and BSA-creatinine with the concentration ratio of BSA and creatinine were (a) 4:1, (b) 2:1, and (c) 1:1.

Fig. S2. FT-IR spectra of BSA, creatinine, and BSA-creatinine.

Fig. S3. Optical spectra of GNPs with different peptides, (a) APC01C, (b) APC02C, and (c) APC03C in the presence and the absence of creatinine.

Fig. S4. Reaction time for the detection of creatinine using GNPs capped with different peptides, (a) APC01C, (b) APC02C, and (c) APC03C.

Fig. S5. Absorption change for the detection of creatinine using GNPs capped with different peptides, (a) APC01C, (b) APC02C, and (c) APC03C, in PBS solutions at different pH levels.

Fig. S6. Zeta potential of GNPs with APC03C in the presence and the absence of creatinine, (a) GNPs, (b) GNPs+APC03C, (c) GNPs+APC03C+NaCl, (d) GNPs+Creatinine+NaCl, and (e) GNPs+APC03C+Creatinine+NaCl.

Fig. S7. Calibration graph in the range of 0-100 ppm for the detection of creatinine from spiked urine samples using GNPs with different peptides, (a) APC01C, (b) APC02C, and (c) APC03C.

Fig. S8. The absorption spectra of GNPs for the detection of creatinine using GNPs with different peptides, (a) APC01C, (b) APC02C, and (c) APC03C, in the range of 0-100 ppm.

Sample	Round of panning	Input phage (PFU)	Output phage (PFU)	Phage recovery (output/input, %)
BSA-creatinine (12-mer kit)	1	1.0×10 ¹¹	5.9×10 ⁵	5.9×10 ⁻⁶
	2	1.0×10 ¹¹	1.1×10 ⁶	1.1×10 ⁻⁵
	3	1.0×10 ¹¹	3.4×10 ⁶	3.4×10 ⁻⁵

Table S2. The discovered peptide sequence from phages (The underlined sequences are candidate peptides)

BSA-creatinine (12-mer kit)					
WDMWPSMDWKAE (3 times)	ACP01C				
<u>VLVRDNLPTTTG</u>	ACP02C				
<u>VQVRDNLPTTTG (5 times)</u>	ACP03C				
ISVVLCFALGII					
GPWYRFSTYEAN					
LGYVAVYGWKPE					
VDIKSHFSHTGK					
LVIPFGRYVSAL					

Sensor		LOD	Reaction time (min)	Sample	Reference
Ag Nanoparticles		0.46 mg/dL (4.520 ppm)	<5	Blood	1
Enzyme-amperometric sensor		0.06 mg/dL (0.989 ppm)	-	Serum	2
Photonic crystal sensor		6.0 μM (0.678 ppm)	30	Serum	3
Colorimetric Detection <i>via</i> plasmonic Nanoparticles		0.13 mM (15.25 ppm)	-	Urine	4
Colorimetric Detection <i>via</i> PEG/Hg ²⁺ -AuNPs		0.451 μM (0.070 ppm)	-	Urine	5
Portable microfluidic sensor by Laiwattanapaisal		3.3 mg/L (3.300 ppm)	2	Urine	6
	APC01C	0.025 ppm	40		
specific binding peptide and gold nanoparticles	APC02C	0.657 ppm	16	Urine	This study
-	APC03C	0.346 ppm	2		

Table S3. Different sensors and parameters for creatinine detection

Additional references

- 1. F. Wei, S. Cheng, Y. Korin, E. F. Reed, D. Gjertson, C. M. Ho, H. A. Gritsch and J. Veale, Anal. Chem., 2012, 84, 7933-7937.
- 2. B. Tombach, J. Schneider, F. Matzkies, R. M. Schaefer and G. C. Chemnitius, Clin. Chim. Acta, 2001, 312, 129-134.
- 3. A. C. Sharma, T. Jana, R. Kesavamoorthy, L. Shi, M. A. Virji, D. N. Finegold and S. A. Asher, J. Am. Chem. Soc., 2004, 126, 2971-2977.
- 4. J. Du, B. Zhu, W.R. Leow, S. Chen, T.C. Sum, X. Peng, X. Chen, Small, 2015, 11(33), 4104-4110.
- 5. S. Xia, Z. Zhu, Bian, L. Li, X.-B. Liu, Nanomaterials, 2019, 9, 1424.
- T. Songjaroen, T. Maturos, A. Sappat, A. Tuantranont and W. Laiwattanapaisal, Anal. Chim. Acta, 2009, 647, 78-83.