Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Ag-ZrO₂-graphene oxide nanocomposite as a metal-leaching-resistant catalyst for the aqueous-phase hydrogenation of levulinic acid into gamma-valerolactone

Xufeng Bai¹, Ting Rin^{1,2}, Jingbo Mao¹, Shenmin Li^{1*}, Jingmei Yin¹, and Jinxia Zhou^{1*}

¹ College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China.

² No. 3 Middle School of Liaocheng, North District, Liaocheng 252000, China

* Corresponding Email: zhoujxmail@163.com (J. Z.); lishenmin@dlu.edu.cn (S. L.)

Fig. S1 The whole XPS survey profiles of the fresh and spent AgZrO₂(2:8)GO10% and AgZrO₂(2:8) catalysts.

Fig. S2 TEM and HRTEM images of the spent AgZrO₂(2:8) catalyst.

Fig. S3 NH₃-TPD analysis of AgZrO₂(2:8).

The catalysts containing graphene oxide (GO) cannot undergo NH₃-TPD analysis because of the thermal reaction between GO and NH₃. Reference ^[S1] and ^[S2] introduced chemical methods to obtain N-dopedgraphene through thermal annealing of GO in an NH₃atmosphere. GO sheets annealed at various reaction temperatures reveals that N-doping occurs at a temperature as low as 300 °C, while the doping levels of N variate between 300 and 1100 °C. Oxygen groups in GO were found responsible for reactions with NH₃ and C-N bond formation. The functional groups such as carbonyl, carboxyl, lactone and quinone at the edges and in the plane of graphene oxide were favorable for the binding of nitrogen.

We tested the acidity of AgZrO₂(2:8) by NH₃-TPD analysis. As shown in Fig. S3. The large desorption peak at around 200 °C and the small desorption peak at around 400 °C in the sample curve indicate that it has sufficient weak acid sites and a few moderately strong acid sites. It means that the *t*-ZrO₂ component possesses acidity and can perform acidic catalysis. AgZrO₂(2:8)GO10% and AgZrO₂(2:8) contain the same *t*-ZrO₂ component according to the XRD and XPS analysis. Therefore, the *t*-ZrO₂ component ofAgZrO₂(2:8)GO10% can also perform acidic catalysis.

Reference

[S1] X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131(2009)15939-15944.
[S2] S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 17(2012)3634-3640.