Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI)

Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water

splitting

Ashakiran Maibam,^{a,b,#} Debalina Chakraborty^{,a,#} Krati Joshi,^a Sailaja Krishnamurty^a,^{b*}

^aPhysical and Materials Chemistry Division, National Chemical Laboratory, Pashan Road, Pune

411008, India.

^bAcademy of Scientific and Innovative Research, CSIR-Human Resource Development Centre

(CSIR-HRDC) Campus, Postal Staff College area, Gaziabad, 201 002 Uttar Pradesh, India.

E-mail: k.sailaja@ncl.res.in, sailaja.raaj@gmail.com

Contents:

1. Fig. S1: Side view of water adsorbed functionalised BPNRs

2. Fig. S2: (a)Band structure of bare zigzag BPNR, (b) band structure of bare armchair BPNR.

3. Fig. S3: Band structure of all functionalised BPNRs.

4. Table S1: Band edge positions (CBM and VBM) of functionalised BPNRs.

5. Table S1: Adsorption energy, O-H bond length of zigzag functionalised water adsorbed BPNRs.

6. Table S2: Adsorption energy, O-H bond length of armchair functionalised water adsorbed BPNRs.

Side view of functionalised zigzag and armchair BPNRs. Tabular form of their adsorption energy, O-H bond length of adsorbed water molecule, symmetric and symmetric stretching frequency. The adsorption energy plot of armchair functionalised BPNRs.

CH ₃ O zigzag functionalised BPNR	CH ₃ O armchair functionalised BPNR		
COOCH ₃ zigzag functionalised BPNR	COOCH ₃ armchair functionalised BPNR		
CHO zigzag functionalised BPNR	CHO armchair functionalised BPNR		
COOH zigzag functionalised BPNR	COOH armchair functionalised BPNR		
OH zigzag functionalised BPNR	OH armchair functionalised BPNR		
NH ₂ zigzag functionalised BPNR	NH ₂ armchair functionalised BPNR		
CONH ₂ zigzag functionalised BPNR	CONH ₂ armchair functionalised BPNR		
SH zigzag functionalised BPNR	SH armchair functionalised BPNR		

Fig. S1 Side view of water adsorbed functionalised BPNRs

Fig.S2 (a) Band structure of bare zigzag BPNR, (b) Band structure of bare armchair BPNR.

Fig.S3 Band structures of functionalised zigzag and armchair BPNRs.

Functional	Zigzag functionalised BPNRs		Armchair functionalised BPNRs	
groups	СВМ	VBM	СВМ	VBM
CH ₃ O	-2.644	-4.811	-2.723	-4.036
COOCH ₃	-2.633	-4.809	-2.376	-4.788
СНО	-2.729	-4.887	-2.596	-4.887
СООН	-2.650	-4.829	-2.383	-4.774
ОН	-2.673	-4.856	-2.612	-4.066
NH ₂	-2.589	-4.753	-2.327	-4.751
CONH ₂	-2.594	-4.776	-2.930	-4.433
SH	-2.658	-4.847	-2.404	-4.802
C ₆ H ₅	-2.611	-4.792	-2.327	-4.736
NO ₂	-2.864	-4.944	-2.730	-4.879

Tuble bit build cage positions (obit and (bit) of functionalised bit (15)	Table S1: Band edge positions	(CBM and VBM) of functionalised	BPNRs.
---	-------------------------------	--------------	---------------------	---------------

Table S2: Adsorption energy, O-H bond length of zigzag functionalised water adsorbedBPNRs

FUNCTIONAL GROUP	SITES	ADSORPTION ENERGY (eV)	O-H-I BOND LENGTH(Å)	O-H-II BOND LENGTH (Å)
CH₃O	А	-0.842	0.989	0.966
	В	-0.568	0.982	0.981
	С	-0.479	0.978	0.974
	D	-0.456	0.976	0.970
COOCH ₃	А	-0.677	0.984	0.968
	В	-0.582	0.983	0.979
	С	-0.568	0.980	0.979
	D	-0.586	0.984	0.980
СНО	Α	-0.514	0.973	0.971
	В	-0.433	0.977	0.969
	С	-0.576	0.981	0.980
	D	-0.590	0.981	0.980
СООН	Α	-0.637	0.979	0.968
	В	-0.513	0.977	0.977
	С	-0.565	0.982	0.981
	D	-0.579	0.981	0.980
ОН	А	-0.959	0.989	0.974
	В	-0.578	0.983	0.980
	С	-0.568	0.982	0.980
	D	-0.458	0.976	0.971
NH ₂	А	-0.794	0.986	0.983
	В	-0.587	0.982	0.980
	С	-0.573	0.981	0.981
	D	-0.584	0.980	0.980
CONH ₂	А	-0.979	0.999	0.965
	В	-0.550	0.983	0.981
	С	-0.435	0.977	0.971
	D	-0.565	0.983	0.979
SH	А	-0.787	0.989	0.975
	В	-0.567	0.982	0.980
	С	-0.450	0.977	0.970
	D	-0.582	0.983	0.980
C ₆ H ₅	А	-0.665	0.984	0.972
	В	-0.553	0.983	0.979
	С	-0.440	0.978	0.971
	D	-0.574	0.982	0.981
NO ₂	A	-0.738	0.980	0.968
	В	-0.452	0.978	0.971
	С	-0.590	0.982	0.980
	D	-0.601	0.983	0.980

Table S3: Adsorption energy, O-H bond length of armchair functionalised water adsorbedBPNRs

FUNCTIONAL GROUP	SITES	ADSORPTION ENERGY (eV)	O-H-I BOND LENGTH(Å)	О-H-II BOND LENGTH (Å)
CH₃O	А	-0.766	0.987	0.969
	В	-0.565	0.985	0.971
	С	-0.5	0.982	0.969
	D	-0.542	0.982	0.980
COOCH ₃	А	-0.424	0.974	0.968
	В	-0.526	0.981	0.978
	С	-0.469	0.977	0.975
	D	-0.479	0.977	0.976
СНО	А	-0.876	0.991	0.967
	В	-0.636	0.977	0.977
	С	-0.476	0.976	0.976
	D	-0.558	0.983	0.979
СООН	А	-0.652	0.977	0.974
	В	-0.439	0.976	0.973
	С	-0.483	0.976	0.976
	D	-0.483	0.977	0.976
ОН	Α	-0.690	0.990	0.969
	В	-0.472	0.976	0.969
	С	-0.577	0.983	0.981
	D	-0.481	0.976	0.975
NH ₂	Α	-0.545	0.977	0.968
	В	-0.572	0.981	0.981
	С	-0.560	0.981	0.980
	D	-0.490	0.977	0.975
CONH ₂	А	-0.705	0.991	0.968
	В	-0.442	0.976	0.974
	С	-0.549	0.981	0.980
	D	-0.549	0.984	0.972
SH	Α	-0.516	0.980	0.968
	В	-0.497	0.976	0.975
	С	-0.492	0.977	0.974
	D	-0.488	0.978	0.974
C ₆ H₅	Α	-0.506	0.979	0.975
	В	-0.473	0.976	0.975
	С	-0.482	0.976	0.976
	D	-0.466	0.976	0.975
NO ₂	Α	-0.466	0.972	0.975
	В	-0.417	0.977	0.972
	С	-0.479	0.976	0.974
	D	-0.484	0.977	0.974