Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Insights into the water permeability and Hg²⁺ removal using

two-dimensional nanoporous boron nitride

Jianbin Du^{a, b}, Yaru Zhang^c, Lijun Han^b, Xiangyun Ma^a, Chenxi Li^{a,*} and Qifeng Li^{a,*}

^aSchool of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China

^bCollege of Science, Langfang Normal University, Langfang 065000, China

^cCollege of Electrical and Information Engineering, Langfang Normal University, Langfang 065000, China

Corresponding Author

*E-mail: lichenxi@tju.edu.cn (Chenxi Li), qfli@tju.edu.cn (Qifeng Li)

1. Computational method of the diffusion coefficient for Hg²⁺

Diffusion coefficient of Hg^{2+} in solution from a MD simulation using Eq. (1),

$$D = \lim_{t \to \infty} \frac{\left\langle \left| \mathbf{r}_{(t)} - \mathbf{r}_{(0)} \right|^2 \right\rangle}{6t}$$
(1)

where D is the diffusion coefficient, t is time, $r_{(t)}$ is the position of the ion at the time t and $r_{(0)}$ is the initial position. The diffusion coefficient can be obtained by calculating the mean square displacement (MSD). We performed independent MD sampling runs at pressure of 10^5 Pa and temperature of 298 K. Firstly, the steepest descent method was used to minimize the energy of the system during 500,000 steps. Then, it was equilibrated in the canonical ensemble (NVT) for 1 ns. Finally, the simulations were performed in NPT ensemble for 2 ns. The diffusion coefficient of Hg²⁺ was obtained as 0.9235×10^{-5} cm²·s⁻¹ in this work.

2. Computational method of the surface tension

Fig. S1. Snapshot of molecular dynamic trajectory in simulation.

In order to calculate the surface tension of water on h-BN, we constructed the simulation box shown in Fig. S1.¹ Firstly, the h-BN membrane was placed in the center of 120 Å simulation box, and 7441 water molecules were randomly filled into the box. Then, the energy of the system was minimized during 500,000 steps. In order to equilibrate, MD simulation was performed in NPT ensemble for 1 ns. Next, the simulation box was lengthened from 120 Å to 240 Å, and 60 Å vacuum parts appeared at both ends of the box. Finally, the h-BN membrane was frozen and the simulations were performed in NVT ensemble for 5 ns. For all simulations, the pressure was always 10⁵ Pa, and other parameters were set the same as the non-equilibrium MD simulation. The surface tension of water on a single h-BN layer was

obtained as $68.66 \text{mN} \cdot \text{m}^{-1}$ in this work.

3. PEs for Hg²⁺ across N4, N6, B4 and B6 pores.

Fig. S2. PEs for Hg²⁺ across N4, N6, B4 and B6 pores. The distance is the position of Hg²⁺ along the z axis, 30 Å is the middle point of the membrane.

1. L. T. CHEN Fei Wu, WU Zhao, Acta Physico-Chimica Sinica, 2015, **31**, 5.