Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Inverse sandwich complexes of B₇M₂⁻, B₈M₂, and B₉M₂⁺ (M=Zr, Hf):

The nonclassical M-M bonds embedded in monocyclic boron rings

Zhong-hua Cui,*ad Chen Chen,^a Qing Wang,^c Lili Zhao,*^c Meng-hui Wang,^a and Yi-hong Ding*^b

^aInstitute of Atomic and Molecular Physics, Jilin University, Changchun, China E-mail: <u>zcui@jlu.edu.cn</u> ^bInstitute of Theoretical Chemistry, Jilin University, Changchun, China E-mail: <u>yhdd@jlu.edu.cn</u> ^cInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China E-mail: <u>ias_llzhao@njtech.edu.cn</u> ^dBeijing National Laboratory for Molecular Sciences

Figure S1. Optimized structures of $B_7Zr_2^-$ at the PBE0/Def2-TZVPP level. The relative energy in kcal/mol computed at the single-point CCSD(T)/Def2-TZVPP//PBE0/Def2-TZVPP and PBE0/Def2-TZVPP (in square brackets) level with zero-point corrections of PBE0/Def2-TZVPP. T1 diagnostic, point group and spectroscopic states were given in curly brace and parenthesis, respectively.

Figure S2. Optimized structures of $B_7Hf_2^-$ at the PBE0/Def2-TZVPP level. The relative energy in kcal/mol computed at the single-point CCSD(T)/Def2-TZVPP//PBE0/Def2-TZVPP and PBE0/Def2-TZVPP (in square brackets) level with zero-point corrections of PBE0/Def2-TZVPP. T1 diagnostic, point group and spectroscopic states were given in curly brace and parenthesis, respectively.

Figure S3. Optimized structures of B_8Zr_2 at the PBE0/Def2-TZVPP level. The relative energy in kcal/mol computed at the single-point CCSD(T)/Def2-TZVPP//PBE0/Def2-TZVPP and PBE0/Def2-TZVPP (in square brackets) level with zero-point corrections of PBE0/Def2-TZVPP. T1 diagnostic, point group and spectroscopic states were given in curly brace and parenthesis, respectively.

Figure S4. Optimized structures of B_8Hf_2 at the PBE0/Def2-TZVPP level. The relative energy in kcal/mol computed at the single-point CCSD(T)/Def2-TZVPP//PBE0/Def2-TZVPP and PBE0/Def2-TZVPP (in square brackets) level with zero-point corrections of PBE0/Def2-TZVPP. T1 diagnostic, point group and spectroscopic states were given in curly brace and parenthesis, respectively.

Figure S5. Optimized structures of $B_9Zr_2^+$ at the PBE0/Def2-TZVPP level. The relative energy in kcal/mol computed at the single-point CCSD(T)/Def2-TZVPP//PBE0/Def2-TZVPP and PBE0/Def2-TZVPP (in square brackets) level with zero-point corrections of PBE0/Def2-TZVPP. T1 diagnostic, point group and spectroscopic states were given in curly brace and parenthesis, respectively.

Figure S6. Optimized structures of $B_9Hf_2^+$ at the PBE0/Def2-TZVPP level. The relativeenergy in kcal/mol computed at the single-point CCSD(T)/Def2-TZVPP//PBE0/Def2-TZVPP and PBE0/Def2-TZVPP (in square brackets) level with zero-point correctionsof PBE0/Def2-TZVPP. T1 diagnostic, point group and spectroscopic states were givenin curly brace and parenthesis, respectively.

Figure S7. The structural properties of the $C_{2\nu}$ -symmetry global B₉M₂⁺ computed at the PBE0/Def2-TZVPP level. WBI and NPA charges is given in parenthesis and in italic.

Figure S8. The d_p - σ molecular orbitals of the D_{nh} -symmetry $B_7Hf_2^-$, B_8Hf_2 , and $B_9Hf_2^+$ and $C_{2\nu}$ -symmetry $B_9Hf_2^+$, where the proportion of the d orbitals of M_2 dimer is given in percentage.

			B_8Zr_2		
fragments	$B_8^{8-}(S) +$	$B_8^{4-}(S) +$	$B_8^{2-}(S) +$	$B_8^{2-}(T) +$	$B_{8}^{0}(S) +$
inaginents	$Zr_{2}^{8+}(S)$	$Zr_{2}^{4+}(S)$	$Zr_2^{2+}(S)$	$Zr_2^{2+}(T)$	Zr_2^0 (S)
ΔE_{int}	-8050.7	-2689.9	-1204.0	-1176.2	-853.8
ΔE_{disp}	-1.9	-5.6	-5.6	-5.6	-5.6
ΔE_{Pauli}	682.7	755.5	598.5	675.4	1002.1
$\Delta E_{elstat}^{[a]}$	-6410.6	-1950.7	-775.8	-761.6	-652.7
$\Delta E_{orb}^{[a]}$	-2320.9	-1489.3	-1021.2	-1084.5	-1197.7

Table S1. EDA-NOCV results of B_8Zr_2 in different electronic states (S: singlet, T: triplet) at the PBE0/TZ2P+ level of theory. Energy values are given in kcal/mol.

^aThe values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$.

^bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb} .

Table S2. EDA-NOCV results of the different charges of B_8Hf_2 at the PBE0/TZ2P+ level of theory. Energy values are given in kcal/mol.

			B_8Hf_2		
fragments	$B_8^{8-}(S) +$	$B_8^{4-}(S) +$	$B_8^{2-}(S) +$	$B_8^{2-}(T) +$	$B_8^0(S) +$
ΔE	-8077 9	-2536 1	-1127 7	-1212.5	$HI_{2}^{\circ}(S)$ -892.0
ΔE_{disp}	-4.2	-4.2	-4.2	-4.2	-4.2
ΔE_{Pauli}	717.4	892.1	927.8	720.0	1039.4
$\Delta E_{elstat}{}^{[a]}$	-6480.2	-1997.4	-1001.5	-865.0	-708.2
$\Delta E_{orb}{}^{[a]}$	-2314.0	-1426.6	-1049.9	-1063.4	-1219.1

^aThe values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$.

^bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb} .

Figure S9. Plot of deformation densities $\Delta\rho$ of the pairwise orbital interactions and the associated interaction energies (ΔE_{orb}) between fragments in B_8Hf_2 ($B_8^{2-} + Hf_2^{2+}$). The direction of the charge flow is red to blue.

Figure S10. Shape of the most important interacting MOs of fragments in $B_8Hf_2 (B_8^{2+} + Hf_2^{2+})$, plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions and the associated interaction energies (ΔE_{orb}) between fragments. The direction of the charge flow is red to blue.

	frag	 frag2-
$\Delta E_{\rho 6} = -20.1$ kcal/mol,	1-7A1(HOMO-3)	35A1(LUMO+7)
$v_6 = \pm 0.48$	v = -0.614	v = 0.630

Figure S11. Plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions and the associated interaction energies (ΔE_{orb}) between fragments in B_8Zr_2 ($B_8^{2-} + Zr_2^{2+}$). The direction of the charge flow is red to blue.

Figure S12. Shape of the most important interacting MOs of fragments in B_8Zr_2 (B_8^{2-} + Zr_2^{2+}), plot of deformation densities $\Delta\rho$ of the pairwise orbital interactions and the associated interaction energies (ΔE_{orb}) between fragments. The direction of the charge flow is red to blue.

deformation densities $\Delta \rho$	inter	acting N	1Os
$\Delta E_{\rho 1-1} = -194.8 \text{ kcal/mol},$ $v_{1-1} = \pm 1.86$	frag1-5B2(LUMO) v = 1.501		frag2-10B2(HOMO-1) v = -1.773
$\Delta E_{p1-2} = -190.0 \text{ kcal/mol},$ $v_{1-2} = \pm 1.85$	frag1- 5B1(LUMO+2) v = 1.495		v = -1.771
$\Delta E_{\rho 2-1} = -204.6 \text{ kcal/mol}, v_{2-1} = \pm 1.46$	frag1-6B2(LUMO+1) v = 1.304		frag2- 9B2(HOMO-3) v = -1.293
$\Delta E_{\rho 2-2} = -69.5$ kcal/mol, $v_{2-2} = \pm 0.97$	6B1(HOMO-2) v = -0.702		$ \begin{array}{c} $
$\Delta E_{\rho 3} = -156.0 \text{ kcal/mol},$ $v_3 = \pm 1.94$	frag 1-8A1(HOMO-1) v = -1.898		$\frac{1}{v = 1.077}$

$\Delta E_{\rho 4} = -99.1 \text{ kcal/mol},$ $v_4 = \pm 1.25$	4A2(HOMO) v = -1.213	frag2- $4A2(LUMO+4)$ $v = 1.132$
$\Delta E_{\rho 5-1} = -22.9 \text{ kcal/mol},$ $v_{5-1} = \pm 0.43$	$\frac{1}{2A2(HOMO-8)}$	3A2(LUMO+3) v = 0.212
$\Delta E_{p5.2} = -16.3 \text{ kcal/mol},$ $v_{5.2} = \pm 0.39$	frag 1-5A1(HOMO-8) v = -0.219	frag2- 20A1(LUMO+2) v = 0.158
$\Delta E_{\rho 6} = -36.1 \text{ kcal/mol},$ $\nu_6 = \pm 0.94$	frag1-7A1(HOMO-3) v = -0.766	frag2- 19A1 (LUMO) v = 0.729
$\Delta E_{\rho 7} = -17.7 \text{ kcal/mol},$ $\nu_7 = \pm 0.48$	frag 1-6A1(HOMO-4) v = -0.633	 $\int_{\text{frag2-}}^{\text{frag2-}} 23A1(\text{LUMO+6})$ v = 0.567

Figure S13. Laplacian distribution of B_8Zr_2 at the PBE0/Def2-TZVPP level. (a): The plane of the B_8 ring. (b): The plane that contains the Zr atoms and two opposing B atoms bisecting the plane of the B_8 ring. Red lines indicate areas of charge concentration $(\nabla^2 \rho(r) < 0)$ while blue lines show areas of charge depletion $(\nabla^2 \rho(r) > 0)$. The solid lines connecting the atomic nuclei are the bond paths. Green dots are bond critical points, red dots are ring critical points, and the two yellow dots are the cage critical points.

Table S3.	Coordinates	of D_{nh} -symmetry	minimum
B_7Zr_2			

D 7 Z 1	2		
E _{PBE0}	= -267.823032	2	
Ezpe	= 0.030606		
В	0.000000	1.801476	0.000000
В	-1.408451	1.123202	0.000000
В	-0.781631	-1.623074	0.000000
В	0.781631	-1.623074	0.000000
В	1.756309	-0.400866	0.000000
В	1.408451	1.123202	0.000000
В	-1.756309	-0.400866	0.000000
Zr	0.000000	0.000000	1.523881
Zr	0.000000	0.000000	-1.523881

 $B_7Hf_2^-$

 $E_{PBE0} = -269.708362$

E _{ZPE} =	= 0.02989		
В	0.000000	1.808534	0.000000
В	-1.413969	1.127602	0.000000
В	-0.784693	-1.629433	0.000000
В	0.784693	-1.629433	0.000000
В	1.763190	-0.402437	0.000000
В	1.413969	1.127602	0.000000
В	-1.763190	-0.402437	0.000000
Hf	0.000000	0.000000	1.502414
Hf	0.000000	0.000000	-1.502414

 B_8Zr_2

E _{PBE}	$_{0} = -292.600299$)	
Ezpe	= 0.035008		
В	0.000000	1.988702	0.000000
В	-1.988702	0.000000	0.000000
В	-1.406225	1.406225	0.000000
В	1.988702	0.000000	0.000000
В	1.406225	1.406225	0.000000
В	-1.406225	-1.406225	0.000000
В	0.000000	-1.988702	0.000000
В	1.406225	-1.406225	0.000000
Zr	0.000000	0.000000	1.469584
Zr	0.000000	0.000000	-1.469584

 $\begin{array}{l} B_8 H f_2 \\ E_{PBE0} = -294.493404 \\ E_{ZPE} = 0.034598 \end{array}$

В	0.000000	1.993785	0.000000
В	-1.993785	0.000000	0.000000
В	-1.409819	1.409819	0.000000
В	1.993785	0.000000	0.000000
В	1.409819	1.409819	0.000000
В	-1.409819	-1.409819	0.000000
В	0.000000	-1.993785	0.000000
В	1.409819	-1.409819	0.000000
Hf	0.000000	0.000000	1.445399
Hf	0.000000	0.000000	-1.445399

$B_9Zr_2^+$

 $E_{PBE0} = -317.1286819$ $E_{ZPE} = 0.036534$

-ZPE	0.0000001		
В	0.000000	2.194442	0.000000
В	-0.750543	-2.062101	0.000000
В	-2.161103	0.381061	0.000000
В	2.161103	0.381061	0.000000
В	-1.900442	-1.097221	0.000000
В	1.410560	1.681040	0.000000
В	0.750543	-2.062101	0.000000
В	-1.410560	1.681040	0.000000
В	1.900442	-1.097221	0.000000
Zr	0.000000	0.000000	1.444766
Zr	0.000000	0.000000	-1.444766

$B_9Hf_2^+\\$

E _{PBE0}	= -319.026390)	
EZPE	= 0.036278		
В	0.000000	2.197258	0.000000
В	-0.751506	-2.064747	0.000000
В	-2.163876	0.381550	0.000000
В	2.163876	0.381550	0.000000
В	-1.902881	-1.098629	0.000000
В	1.412370	1.683197	0.000000
В	0.751506	-2.064747	0.000000
В	-1.412370	1.683197	0.000000
В	1.902881	-1.098629	0.000000
Hf	0.000000	0.000000	1.420456
Hf	0.000000	0.000000	-1.420456

Table S4. Coordinates of $C_{2\nu}$ -ymmetry minimum

$B_7Zr_2^-$							
$E_{PBE0} = -267.736763$							
$E_{ZPE} = 0.02907$							
В	0.000000	0.809488	-1.818698				
В	0.000000	-0.809488	-1.818698				
В	1.210343	0.000000	-0.885614				
В	-1.210343	0.000000	-0.885614				
В	0.000000	0.000000	1.528563				
В	1.416841	0.000000	0.735970				
В	-1.416841	0.000000	0.735970				
Zr	0.000000	-1.721970	0.150508				
Zr	0.000000	1.721970	0.150508				
$B_7Hf_2^-$							
$E_{PBE0} = -269.629905$							
E _{ZPE} =	= 0.028382						
В	0.000000	0.815947	-1.875820				
В	0.000000	-0.815947	-1.875820				
В	1.205249	0.000000	-0.928262				
В	-1.205249	0.000000	-0.928262				
В	0.000000	0.000000	1.480665				
В	1.419238	0.000000	0.696245				
В	-1.419238	0.000000	0.696245				
Hf	0.000000	-1.719874	0.094966				
Hf	0.000000	1.719874	0.094966				
B_8Zr_2							
$E_{PBE0} = -292.589603$							
$E_{ZPE} = 0.035570$							
В	0.000000	1.286868	1.163402				
В	0.000000	1.719656	-0.361367				
В	0.000000	0.786116	-1.602673				
В	0.000000	-1.719656	-0.361367				
В	-0.808065	0.000000	1.892417				
В	0.808065	0.000000	1.892417				
В	0.000000	-0.786116	-1.602673				
В	0.000000	-1.286868	1.163402				
Zr	-1.622159	0.000000	-0.136472				
Zr	1.622159	0.000000	-0.136472				

 B_8Hf_2

 $E_{PBE0} = -294.486911$

E _{ZPE} =	= 0.035068		
В	0.000000	1.726604	-0.312166
В	0.000000	-0.787639	-1.553339
В	0.000000	1.288582	1.211425
В	-0.810765	0.000000	1.943027
В	0.000000	-1.726604	-0.312166
В	0.810765	0.000000	1.943027
В	0.000000	0.787639	-1.553339
В	0.000000	-1.288582	1.211425
Hf	1.615121	0.000000	-0.089510
Hf	-1.615121	0.000000	-0.089510

 $B_9Zr_2^+$

 $E_{PBE0} = -317.197598$

$E_{ZPE} = 0.040063$						
В	0.000000	1.933492	0.008148			
В	0.000000	1.313327	-1.419553			
В	0.000000	-1.404566	1.428871			
В	-0.819628	0.000000	-1.987924			
В	0.000000	-1.933492	0.008148			
В	0.000000	-1.313327	-1.419553			
В	0.000000	0.000000	2.035287			
В	0.819628	0.000000	-1.987924			
В	0.000000	1.404566	1.428871			
Zr	-1.551625	0.000000	0.119102			
Zr	1.551625	0.000000	0.119102			

$B_9Hf_2^+$

 $E_{PBE0} = -319.098124$ $E_{ZPE} = 0.039671$ В 0.000000 1.942596 -0.039896 В 0.000000 1.315826 -1.464889 В 0.000000 -1.407828 1.379017 В 0.000000-0.822082 -2.030508 В 0.000000 -1.942596 -0.039896 В 0.000000 -1.315826 -1.464889 0.000000 В 0.000000 1.986201 В 0.000000 -2.030508 0.822082 В 0.000000 1.407828 1.379017 Hf 0.000000 -1.540661 0.080776 0.080776 Hf 1.540661 0.000000