Assembling two Dy₂ single-molecule magnets with different energy barriers via fine-tuning the geometries of Dy^{III} sites

Dawei Li,^a Man-Man Ding,^b Yu Ge,^a David Felipe Tello Yepes,^d Mingyuan Sun,^a Muhammad Saleem Najib,^d Yahong Li,^{*a} Yi-Quan Zhang^{*b} and Jin-lei Yao^{*c}

^a College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China

E-mail: liyahong@suda.edu.cn.

- ^bJiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China E-mail: zhangyiguan@njnu.edu.cn
- ^c Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China E-mail: jlyao@usts.edu.cn.
- ^d College of Environmental Engineering, University of Waterloo, Waterloo N2L3G1, Canada

Supplementary Information Contents

1. ¹ H, ¹³ C NMR spectra of H_2L^1 and H_2L^2	2
2. PXRD patterns of 1 and 2	4
3. IR spectra of H_2L^1 , H_2L^2 , 1 and 2	5
4. Selected bond lengths and angles for 1 and 2	6
5. SHAPE program details for 1 and 2	9
6. Examples of eight-coordinated Dy_2 SMMs bearing $[Dy_2O_2]$ moieties	10
7. In τ versus T^{-1} plots for complexes 1 and 2 at high temperature	11
8. Temperature dependence of the $\chi^{\prime\prime}$ plots for complex 1 and the diluted sample at indicated and the diluted sample at indicated and the diluted sample at indicated at the sample at the samp	ated
frequencies under 0 Oe (Fig. S6), 200 Oe (Fig. S7) and 4000 Oe (Fig. S8)	12
9. Plot of $ln(\tau)$ vs $1/T$ for 1 and the diluted sample	15
10. Best fitted parameters for complexes 1 and 2 under 0 Oe dc field	16
11. Computational details	18

1. $^1\text{H}\textsc{,}\,^{13}\text{C}$ NMR spectra of H_2L^1 and H_2L^2

Fig. S1 The 1 H NMR (a) and 13 C NMR (b) spectra of H₂L¹.

Fig. S2 The $^1\mathrm{H}$ NMR (c) and $^{13}\mathrm{C}$ NMR (d) spectra of $\mathrm{H}_2\mathrm{L}^2.$

2. PXRD patterns of 1 and 2

(b)

Fig. S3 PXRD patterns of 1(a) and 2 (b).

3. IR spectra of $H_2L^1,\,H_2L^2,\,\boldsymbol{1}$ and $\boldsymbol{2}$

Fig. S4 FT-IR spectra of H_2L^1 (a), H_2L^2 (b), 1 (c) and 2 (d).

4. Selected bond lengths and angles for 1 and 2

1			
Dy1-07	2.480(8)	Dy2-O9	2.315(9)
Dy1-O10	2.175(8)	Dy2-O1	2.391(7)
Dy1-O9	2.282(7)	Dy2-O15	2.478(11)
Dy1-O1	2.370(9)	Dy2-O2	2.216(8)
Dy1-O3	2.370(8)	Dy2-O13	2.498(10)
Dy1-N3	2.531(11)	Dy2-O12	2.446(9)
Dy1-O4	2.479(11)	Dy2-O11	2.298(9)
Dy1-O5	2.454(10)	Dy2-N1	2.452(11)
O7-Dy1-N3	149.0(3)	O9-Dy2-O1	67.6(3)
O10-Dy1-O7	78.6(3)	O9-Dy2-O15	66.1(3)
O10-Dy1-O9	149.0(3)	O9-Dy2-O13	73.9(3)
O10-Dy1-O1	141.4(3)	O9-Dy2-O12	84.1(3)
O10-Dy1-O3	83.7(3)	O9-Dy2-N1	142.6(3)
O10-Dy1-N3	74.5(3)	O1-Dy2-O15	120.1(3)
O10-Dy1-O4	86.1(4)	O1-Dy2-O13	123.5(3)
O10-Dy1-O5	91.2(4)	O1-Dy2-O12	83.7(3)
O9-Dy1-O7	132.3(3)	O1-Dy2-N1	78.1(3)
O9-Dy1-O1	68.5(3)	O15-Dy2-O13	75.8(3)
O9-Dy1-O3	99.4(3)	O2-Dy2-O9	140.5(3)
O9-Dy1-N3	76.1(3)	O2-Dy2-O1	151.9(3)
O9-Dy1-O4	77.9(3)	O2-Dy2-O15	81.1(3)
O9-Dy1-O5	98.9(3)	O2-Dy2-O13	77.2(3)
O1-Dy1-O7	65.5(3)	O2-Dy2-O12	98.8(3)
O1-Dy1-N3	133.4(3)	O2-Dy2-O11	85.7(4)
O1-Dy1-O4	122.0(3)	O2-Dy2-N1	75.2(3)

Table S1 Selected bond lengths (Å) and angle (°) for complexes 1 and 2 $\,$

O1-Dy1-O5	88.5(4)	O12-Dy2-O15	125.7(3)
O3-Dy1-O7	84.1(3)	O12-Dy2-O13	52.0(3)
O3-Dy1-O1	79.0(3)	O12-Dy2-N1	77.7(3)
O3-Dy1-N3	77.9(3)	O11-Dy2-O9	106.3(3)
O3-Dy1-O4	154.4(3)	O11-Dy2-O1	82.3(3)
O3-Dy1-O5	152.2(4)	O11-Dy2-O15	76.5(3)
O4-Dy1-O7	116.8(3)	O11-Dy2-O13	149.3(3)
O4-Dy1-N3	76.7(3)	O11-Dy2-O12	157.7(4)
O5-Dy1-O7	68.1(4)	O11-Dy2-N1	82.5(4)
O5-Dy1-N3	127.1(4)	N1-Dy2-O15	149.3(3)
O5-Dy1-O4	51.2(4)	N1-Dy2-O13	116.5(3)
Dy1-O9-Dy2	113.0(3)	Dy1-O1-Dy2	107.2(3)

2				
Dy1-O4	2.427(7)	Dy1-O2	2.170(6)	
Dy1-O1	2.301(6)	Dy1-O3	2.372(6)	
Dy1-O11	2.356(5)	Dy1-O5	2.484(6)	
Dy1-O81	2.507(6)	Dy1-N1	2.460(6)	
O1-Dy11	2.356(5)	O8-Dy11	2.507(6)	
O4-Dy1-O81	72.9(2)	O3-Dy1-O5	153.4(2)	
O4-Dy1-O5	51.9(2)	O3-Dy1-N1	78.8(2)	
O4-Dy1-N1	124.7(2)	O5-Dy1-O81	123.1(2)	
O1-Dy1-O4	99.2(2)	N1-Dy1-O81	146.0(2)	
O11-Dy1-O4	91.5(2)	N1-Dy1-O5	74.6(2)	
O1-Dy1-O11	67.0(2)	N2-O4-Dy1	97.5(5)	
O1-Dy1-O81	131.37(19)	Dy1-O1-Dy11	106.0(2)	
O11-Dy1-O81	65.39(19)	O2-Dy1-O1	150.1(2)	
O1-Dy1-O3	99.9(2)	O2-Dy1-O11	142.6(2)	
O11-Dy1-O3	78.0(2)	O2-Dy1-O81	78.4(2)	

O1-Dy1-O5	76.2(2)	O2-Dy1-O3	86.9(2)
O11-Dy1-O5	122.4(2)	O2-Dy1-O5	84.7(2)
O11-Dy1-N1	133.7(2)	O2-Dy1-N1	74.6(2)
O1-Dy1-N1	78.3(2)	O3-Dy1-O4	152.4(2)
O2-Dy1-O4	86.3(2)	O3-Dy1-O81	79.5(2)

Symmetry transformations used to generate equivalent atoms: ¹1-X, +Y, 3/2-Z

5. SHAPE program details for 1 and 2

Table S2 Agreement factors between the coordination polyhedron of the Dy^{III} ions in Dy_2 and thevarious ideal polyhedrons calculated by the SHAPE program.

Agreement factors for Dy ^{III} ion in complexes	$TDD-8(D_{2d})$	$SAPR-8(D_{4d})$
Dy ^{III} in 1	2.737	4.739
	2.038	1.911
Dy ^{III} in 2	2.584	4.860
	2.584	4.860

 $TDD-8(D_{2d}) =$ Triangular dodecahedron

 $SAPR-8(D_{4d}) =$ Square antiprism

6. Examples of eight-coordinated Dy₂ SMMs bearing [Dy₂O₂] moieties

Table 55 Examples of e	igin coord	matea D	<u>y</u> ₂ 01011			lies		
Complexes	Solvent	Dono	Sy	Magnetic	$Dy \cdots Dy$	Dy-O-Dy	τ_0/s	$U_{\rm eff}/K_B({ m K})$
	ligand	rs	mm	behavior	distance /	angle /°		
			etry		Å			
[Dy ₂ (bfbpen) ₂ (H ₂ O) ₂]·2I ^{- S1a}	H_2O	N_4O_4	$D_{\rm 4d}$	AF	3.845	109.45	3.68×10-6	20.9 (0 Oe)
								26.9 (1200 Oe)
$[Dy_2(bcbpen)_2(H_2O)_2] \cdot 2I$	H_2O	N_4O_4	$D_{\rm 4d}$	AF	3.861	110.01	6.79×10-7	72.7 (0 Oe)
·0.5H ₂ O ^{S1a}								
$[Dy_2(hmi)_2(NO_3)_2(MeOH)_2]$	MeOH	NO_7	/	F	3.750	106.41	3×10-7	56 (0 Oe)
S1b								
$[Dy_2(L^1)_2(NO_3)_2(MeOH)_2]$	MeOH	NO_7	D_{2d}	F	3.787	109.32	2.66×10-7	198.8(0 Oe)
S1c								
$[Dy_2(L^1)_2(NO_3)_2(EtOH)_2]^{S1c}$	EtOH	NO_7	$D_{\rm 2d}$	F	3.774	108.84	2.16×10-6	131.3(0 Oe)
$[Dy_2(L^2)_2(NO_3)_2(MeOH)_2]$	MeOH	NO_7	$D_{\rm 2d}$	F	3.7353	107.73	3.21×10-5	51.97(0 Oe)
·2MeOH ^{S1d}								
Dy ₂ (L ³) ₂ (NO ₃) ₂ (MeOH) ₂ ^{S1d}	MeOH	NO_7	$D_{\rm 4d}$	F	3.8397	111.13	6.74×10-6	87.16(0 Oe)
						111.69		
$[Dy_2(L^4)_2(DBM)_2(DMA)_2]$	DMA	NO_7	C_{2v}	AF	3.7198	105.3	2.74×10-8	77 (0 Oe)
·2DMA ^{S1e}								
$[Dy_2(L^4)_2(DBM)_2(DMF)_2]$	DMF	NO_7	C_{2v}	AF	3.7270	106	1.36×10-6	24 (0 Oe)
Sle								
$[Dy_2(L^5)_2(piv)_2]^{S1f}$	/	N_3O_5	D_{2h}	AF	3.798	110.19	3.06×10-6	40.32 (0 Oe)
$[Dy_2(L^6)_2(piv)_2]^{S1f}$	/	N_3O_5	D_{2h}	AF	3.810	106.74	9.19×10-6	31.67 (0 Oe)
[Dy ₂ (L ⁷) ₂ (piv) ₂]·2MeCN ^{S1f}	/	N_3O_5	D_{2h}	AF	3.8350/3.	109.07/10	2.17×10-6	33.53 (0 Oe)
					8226	8.38		
$[Dy_2(L^8)_2(NO_3)_2(EtOH)(DM$	EtOH	NO_7	D_{2d}	F	3.8326	113.0/107	4.64×10-6	86.91 (0 Oe)
F)]·2EtOH [this work]	DMF		$D_{\rm 4d}$.2		
$[Dy_2(L^9)_2(NO_3)_2(MeOH)_2]$	MeOH	NO_7	D_{2d}	F	3.7193	106.0	3.88×10-6	93.70 (0 Oe)
[this work]								

Table S3 Examples of eight-coordinated Dy₂ SMMs bearing [Dy₂O₂] moieties

 $H_2 b f b p en = N, N'-b is-(2-hydroxy-5-fluoro-benzyl)-N, N'-b is-(pyridin-2-ylmethyl) ethylenediamine, H_2 b c b p en = N, N'-b is-(2-hydroxy-5-chloro-benzyl)-N, N'-b is-(pyridin-2-ylmethyl) ethylenediamine), H_2 h mi = (2-hydroxy-3-methoxybenyl) methylene (isonicotino) hydrazine, H_2 L^1 = 2-ethoxy-6-(((2-hydroxy-3-methoxy benzyl) imino) methyl) phenol, H_2 L^2 = 4-chloro-2-(((2-hydroxy-3-methoxybenzyl) imino) methyl) phenol, H_2 L^3 = 2-(((2-hydroxybenzyl) idene) amino) methyl)-6-methoxybenol), H_2 L^4 = 2-hydroxy-N'-(2-hydroxy-3-methoxybenzyl) idene) benzohydrazide, HDBM = dibenzoylmethane, H_2 L^5 = N1,N3-b is (salicylaldehyde) diethylenetriamine), H_2 L^6 = N1,N3-b is(3-methoxysalicylidene) diethylenetriamine), H_2 L^7 = N1,N3-b is (5-chlorosalicyladehyde) diethylenetriamine, H_2 L^8 = 4-chloro-2-(((3-ethoxy-2-hydroxybenzyl)) mino) methyl) phenol (this work), H_2 L^9 = 2-(((3-ethoxy-2-hydroxybenzyl)) methyl)-4-methoxyphenol (this work), F = ferromagnetic, AF = antiferromagnetic.$

Fig. S5 $\ln \tau$ versus T^{-1} plots for **1** (a) and **2** (b) at the high temperature; the solid lines represent the least-squares fits of the experimental data to the Arrhenius law.

8. Temperature dependence of the χ'' plots for complex **1** and the diluted sample at indicated frequencies under 0 Oe (Fig. S6), 200 Oe (Fig. S7), and 4000 Oe (Fig. S8).

Fig. S6 Temperature dependence of the χ '' plots for complex 1 and the diluted sample at indicated frequencies and 0 Oe applied field.

320 Hz 200 Oe field

Fig. S7 Temperature dependence of the χ '' plots for complex 1 and the diluted sample at indicated frequencies and 200 Oe applied field.

320 Hz 4000 Oe field

666 Hz 4000 Oe field

Fig. S8 Temperature dependence of the χ '' plots for complex 1 and the diluted sample at indicated frequencies and 4000 Oe applied field.

9. Plot of $ln(\tau)$ vs 1/T for **1** and the diluted sample

Fig. S9 Plot of $\ln(\tau)$ vs 1/T for two samples. The effective energy barriers (U_{eff}/K_B) obtained from the fits are indicated.

10. Best fitted parameters for complexes ${\bf 1}$ and ${\bf 2}$ under 0 Oe dc field

		1			
Temperature / K	$\chi_{\rm s}/~{\rm cm}^3{\rm mol}^{-1}$	$\chi_T / \mathrm{cm}^3 \mathrm{mol}^{-1}$	τ / s	α	R
10	2.30E-07	3.85E+00	1.04E-02	1.50E-01	6.59E-02
11	5.61E-07	3.19E+00	6.17E-03	1.20E-01	8.22E-02
12	9.61E-07	2.71E+00	3.88E-03	9.04E-02	1.82E-01
13	1.23E-06	2.53E+00	2.85E-03	1.01E-01	9.08E-02
14	1.88E-06	2.32E+00	2.05E-03	1.03E-01	3.36E-01
15	3.75E-06	2.13E+00	1.45E-03	8.17E-02	1.45E-01
16	6.54E-06	2.00E+00	1.08E-03	8.43E-02	1.33E-01
17	1.10E-05	1.85E+00	8.19E-04	8.57E-02	3.69E-01
17.5	1.71E-05	1.79E+00	7.06E-04	7.12E-02	9.17E-02
18	1.24E-05	1.75E+00	6.22E-04	7.48E-02	6.96E-02
18.5	1.82E-05	1.64E+00	5.23E-04	5.01E-02	2.94E-01
19	2.96E-05	1.59E+00	4.58E-04	4.29E-02	3.05E-01
19.5	3.88E-05	1.58E+00	4.11E-04	5.54E-02	1.37E-01
20	4.26E-05	1.53E+00	3.59E-04	4.62E-02	1.26E-01
20.5	1.58E-15	1.51E+00	3.22E-04	5.98E-02	5.70E-02
21	2.62E-15	1.42E+00	2.76E-04	2.56E-02	2.70E-01
21.5	3.31E-15	1.40E+00	2.46E-04	3.09E-02	2.16E-01
22	3.45E-15	1.37E+00	2.16E-04	2.24E-02	2.80E-01

 Table S4 Parameters from the fitting of the Cole-Cole plots of 1 according to the generalized

 Debye model.

Table S5	Parameters	from th	ne fitting	of the	Cole-Cole pl	lots of 2	according	to the	generalized
Debye mo	odel.								

Temperature / K	$\chi_{\rm s}$ / cm ³ mol ⁻¹	χ_{T} / cm ³ mol ⁻¹	τ / s	α	R
11	2.30E-02	3.15E+00	1.06E-02	7.46E-02	1.50E-01
12	5.66E-03	2.70E+00	6.26E-03	7.96E-02	5.15E-02

13	1.36E-15	2.33E+00	3.83E-03	6.90E-02	2.06E-01
14	8.25E-16	2.18E+00	2.63E-03	7.43E-02	1.58E-01
15	6.32E-16	2.01E+00	1.84E-03	7.04E-02	6.72E-02
16	6.61E-16	1.91E+00	1.36E-03	8.37E-02	1.22E-01
17	8.51E-16	1.80E+00	1.01E-03	8.35E-02	1.52E-01
18	6.56E-16	1.65E+00	7.37E-04	6.88E-02	1.08E-01
19	3.95E-16	1.51E+00	5.46E-04	4.44E-02	5.40E-01
20	4.83E-16	1.47E+00	4.39E-04	5.97E-02	2.56E-01
21	5.19E-17	1.35E+00	3.36E-04	2.10E-02	1.68E-01
22	8.81E-17	1.31E+00	2.73E-04	3.56E-02	4.31E-02
23	9.59E-17	1.25E+00	2.21E-04	3.23E-02	2.42E-01
24	1.02E-16	1.21E+00	1.82E-04	4.29E-02	1.70E-01

11. Computational details

Both of binuclear complexes **1** and **2** have two types of magnetic center Dy^{III} ions indicated as **1(Dy1)**, **1(Dy2)**, **2(Dy1)** and **2(Dy2)**, respectively. Complete-active-space self-consistent field (CASSCF) calculations on individual Dy^{III} fragments for **1** and **2** (see Figure S1 for the calculated complete structures of **1** and **2**) on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.4^{S1} program package. Each individual Dy^{III} fragment in **1** and **2** was calculated keeping the experimentally determined structure of the corresponding compound while replacing the neighboring Dy^{III} ion by diamagnetic Lu^{III}.

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III} ; VTZ for close N and O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. Active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets for Dy^{II} . SINGLE_ANISO^{S2} program was used to obtain the energy levels, *g* tensors, magnetic axes, *et al.*, based on the above CASSCF/RASSI-SO calculations.

Fig. S10 Calculated complete structures of complexes 1 and 2; H atoms are omitted.

Table S6 Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of individual Dy^{III} fragments for complexes 1 and 2 using CASSCF/RASSI-SO with MOLCAS 8.4.

VD-		1(Dy1)		1(Dy2)		
KDS	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.002			0.002	
1	0.0	0.003	±15/2	0.0	0.004	±15/2
		19.716			19.436	
		0.094			0.055	
2	240.5	0.113	±13/2	167.2	0.064	±13/2
		16.614			16.596	
		0.771			0.269	
3	375.6	0.851	±11/2	327.7	0.352	±11/2
		13.378			14.154	
		4.182			3.515	
4	453.7	6.072	±7/2	425.8	4.336	±9/2
		10.511			10.614	
		7.990			11.443	
5	501.6	6.413	$\pm 3/2$	479.9	6.615	$\pm 5/2$
		2.537			1.700	
		2.627			0.459	
6	541.0	6.114	$\pm 5/2$	548.4	2.882	±3/2
		11.155			12.975	
		0.267			1.116	
7	593.1	1.130	$\pm 1/2$	592.0	3.540	$\pm 1/2$
		17.742			13.432	
		0.083			0.262	
8	657.8	0.220	±9/2	644.4	0.670	±7/2
		19.256			17.985	

KDs	2(Dy1)			2(Dy2)		
	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.002			0.002	
1	0.0	0.003	±15/2	0.0	0.003	±15/2
		19.753			19.683	
		0.077			0.075	
2	243.1	0.095	±13/2	243.6	0.093	±13/2
		16.761			16.752	
		0.629			0.621	
3	387.0	0.688	±11/2	387.8	0.681	±11/2
		13.729			13.741	
		2.971			2.998	
4	483.0	3.286	±9/2	484.2	3.309	±9/2
		10.273			10.268	
		3.112			3.088	
5	538.6	5.556	$\pm 5/2$	540.3	5.541	$\pm 5/2$
		11.313			11.278	
		0.557			0.568	
6	594.5	2.414	$\pm 1/2$	596.0	2.448	±1/2
		13.287			13.220	
		0.257			0.258	
7	622.9	0.577	$\pm 3/2$	624.2	0.568	±3/2
		14.922			14.859	
		0.225			0.227	
8	673.6	0.502	±7/2	674.9	0.517	±7/2
		18.043			18.019	

Table S7 Wave functions with definite projection of the total moment $| m_J >$ for the lowest two KDs of individual Dy^{III} fragments for complexes **1** and **2**.

	E/cm^{-1}	wave functions		
1(Dy1)	0.0	97.6% ±15/2>		
	240.5	85.2% ±13/2>+10.0% ±9/2>		
1(Dy2)	0.0	91.9% ±15/2>		
	167.2	86.6% ±13/2>+10.5% ±9/2>		
2(Dy1)	0.0	97.6% ±15/2>		
	243.1	82.3% ±13/2>+10.2% ±9/2>4.4% ±11/2>		
2(Dy2)	0.0	97.6% ±15/2>		
	243.6	82.8% ±13/2>+10.0% ±9/2>+4.3% ±11/2>		

Fig. S11 Magnetization blocking barriers for individual Dy^{III} fragments in **1** and **2**. The thick black lines represent the KDs as a function of their magnetic moment along the magnetic axis. The green lines correspond to diagonal quantum tunneling of magnetization (QTM); the blue line represent off-diagonal relaxation process. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

To fit the exchange interactions in complexes 1 and 2, we took two steps to obtain them. Firstly, we calculated individual Dy^{III} fragments using CASSCF/RASSI-SO to obtain the corresponding magnetic properties. Then, the exchange interactions between the magnetic centers were considered within the Lines model,^{S3} while the account of the dipole-dipole magnetic couplings were treated exactly. The Lines model is effective and has been successfully used widely in the research field of *d* and *f*-elements single-molecule magnets.^{S4}

For complexes 1 and 2, there is only one type of \mathscr{H} .

The Ising exchange Hamiltonian is:

$$\hat{H}_{exch} = -\hat{\mathcal{Y}}\hat{\mathcal{Y}}_{y_1}\hat{\mathcal{Y}}_{y_2} \tag{1}$$

The \mathscr{Y}_{total} is the parameter of the total magnetic interaction ($\mathscr{Y}_{total} = \mathscr{Y}_{dip} + \mathscr{Y}_{exch}$) between magnetic center ions. The $\mathscr{Y}_{\mathcal{B}y} = 1/2$ is the ground pseudospin on the Dy^{III} site. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constant was fitted through comparison of the computed and measured magnetic susceptibilities using the POLY_ANISO program.^{S2}

Table S8 Exchange energies E (cm⁻¹), the energy difference between each exchange doublets Δ_t (cm⁻¹) and the main values of the g_z for the lowest two exchange doublets of 1 and 2.

	1			2		
	Ε	Δ_t	gz	Ε	Δ_t	gz
1	0.00	0.76×10 ⁻⁷	38.567	0.00	0.62×10 ⁻⁷	38.129
2	1.10	0.15×10 ⁻⁶	6.750	1.31	0.12×10 ⁻⁶	10.069

Fig. S12 Calculated (red solid line) and experimental (black square dot) data of magnetic susceptibilities of **1** and **2**. The intermolecular interactions zJ' of **1** and **2** were fitted to 0.01 and -0.01 cm^{-1} , respectively.

Fig. S13 Calculated orientations of the local main magnetic axes on Dy^{III} of complexes 1 and 2.

References:

- S1 (a) X. F. Ma, B. B. Chen, Y. Q. Zhang, J. H. Yang, Q. Shi, Y. L. Ma and X. Y. Liu, *Dalton Trans.*, 2019, 48, 12622; (b) P. H. Lin, T. J. Burchell, R. Clerac and M. Murugesu, *Angew. Chem., Int. Ed.*, 2008, 47, 8848; (c) Y. Qin, H. F. Zhang, H. Sun, Y. D. Pan, Y. H. Ge, Y. H. Li and Y. Q. Zhang, *Chem. -Asian J.*, 2017, 12, 2834; (d) Y. R. Qin, Y. Jing, Y. Ge, W. Liu, Y. H. Li and Y. Q. Zhang, *Dalton Trans.*, 2018, 48, 15197; (e) K. Zhang, C. Yuan, F. S. Guo, Y. Q. Zhang and Y. Y. Wang, *Dalton Trans.*, 2016, 46, 186; (f) Y. Ge, Y. Huang, J. L. B. Montenegro, Y. F. Cui, W. Liu, Y. H. Li and B. L. Wang, *Chem. -Asian J.*, 2018, 14, 986.
- S2 F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, *J. Comput. Chem.* 2016, 37, 506.
- S3 (a) L. F. Chibotaru, L. Ungur, A. Soncini, *Angew. Chem., Int. Ed.*, 2008, 47, 4126. (b) L. Ungur, W. Van den Heuvel, L. F. Chibotaru, *New J. Chem.* 2009, 33, 1224. (c) L. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet, D. Luneau, *J. Am. Chem. Soc.* 2008, 130, 12445-12455.

S4 Lines, M. E. J. Chem. Phys. 1971, 55, 2977-2984.

S5 (a) K. C. Mondal, A. Sundt, Y. H. Lan, G. E. Kostakis, O.Waldmann, L. Ungur, L. F. Chibotaru, C. E. Anson, A. K. Powell, *Angew. Chem., Int. Ed.* 2012, *51*, 7550. (b) S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru, K. S. Murray, *Angew. Chem., Int. Ed.* 2013, *52*, 12014-12019.