Supporting Information

Trapping of Two Mononuclear Silyl Platinum(II)/Palladium(II) and a Unique Dinuclear bis(μ_{2}-Disilene)(silyl) Nickel(II) Complexes

Hao Songan, Sen-Yu Zhangb, Peng-Fei Gu ${ }^{\text {b }}$, Hua-Yu Wu ${ }^{\text {b }}$, Zi-Kun Wang ${ }^{\text {b }}$, Shi Wang ${ }^{\text {b* }}$, Zheng Wang ${ }^{\text {c*, }}$, Yu-Yang Gu ${ }^{\text {b }}$, Yong-Hua Li ${ }^{\text {b* }}$
${ }^{a}$ New Energy Technology Engineering Lab of Jiangsu Province, School of Science, Nanjing University of Posts \& Telecommunications, Nanjing 210023, China.
${ }^{b}$ Key Laboratory for Organic Electronics and Information Displays \& Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts \& Telecommunications, Nanjing 210023, China.

* Corresponding author. Tel/Fax: +8625 85866332; E-mail address: iamyhli@njupt.edu.cn (Y. H. Li); wangzhengnw@126.com (Z. Wang) \# Hao Song and Sen-Yu Zhang contributed equally to this work.
${ }^{c}$ College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.

S1. X-ray crystallography

Single crystals for $\mathbf{4}$ and $\mathbf{5}$ were obtained upon slowly evaporation of the mixed solvent of ethyl acetate and hexane. Crystalline $\mathbf{6}$ is virtually insoluble in most of organic solvents and single crystals were obtained luckily upon cooling a hot tetrahydrofuran solution under nitrogen atmosphere. X-ray diffraction data were collected at 293 K and on a Bruker Apex CCD area detector diffractometer using a graphite monochromator with $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections.

Data reductions were performed using the SAINT software, and absorption corrections were applied using SADABS supplied by Bruker. ${ }^{[1]}$ The structures were solved by direct methods and refined to convergence by full-matrix least squares on F^{2} with anisotropic thermal parameters for all non-hydrogen atoms using SHELX package. ${ }^{[2]}$ As for compound 4, we performed isotropic refinements on all the nonmetallic atoms due to the presence of NPD which was aroused by Pt heavy atom, resulting in relatively high R_{1} and wR_{2} values. The hydrogen atoms were placed in idealized positions using a riding model. Solvent molecules in structure $\mathbf{6}$ are highly disordered and attempts to locate and refine the solvent peaks were unsuccessful. The diffused electron densities resulting from these solvent molecules were removed using the SQUEEZE routine of PLATON. ${ }^{[3]}$ Crystal data and structure refinement results were summarized in Table S1. The selected bond lengths and bond angles are listed in Table S2. The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition no. CCDC 1972435 for $\mathbf{4}, 1972439$ for 5, 1972446 for $\mathbf{6}$. These data can be obtained free of charge (http://www.ccdc.cam.ac.uk/data_request/cif).

1. (a) SAINT-plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999; (b) Sheldrick, G. M. SADABS, an Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996
2. Sheldrick, G. M. A short history of SHELX. Acta. Crystallogr. Sect. A: Found Crystallogr. 2008, 64, 112-122.
3. Spek A. L. J. Appl. Crystallogr. 2003, 36, 7-13.

S2. Copies of NMR spectra of the product

Figure S1: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ for compound 4

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ for compound 4

Figure S3: ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ for compound 4

Figure S4: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{THF}-\mathrm{d}_{8}\right)$ for compound 5

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum (THF-d d_{8}) for compound 5

Figure S6: ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{THF}-\mathrm{d}_{8}, \mathrm{DEPT}\right)$ for compound 5

Figure $\boldsymbol{S} 7:{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF-d ${ }_{8}$, INEPT) for compound 5

Table S1 Crystallographic data for 4, 5 and 6

Compounds	4	5	6
Formula	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PtSi}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{PdSi} \mathrm{i}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{108} \mathrm{Ni}_{2} \mathrm{P}_{4} \mathrm{Si}_{4}$
Formula weight	597.68	755.34	1231.12
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P $21 / c$	P-1	P-1
$a(\AA)$	8.6370(17)	11.747(2)	11.740(2)
$b(\AA)$	15.795(3)	13.118(3)	15.220(3)
$c(\AA)$	18.196(4)	13.202(3)	21.430(4)
$\alpha\left({ }^{\circ}\right)$	90	94.02(3)	70.53(3)
$\beta\left({ }^{\circ}\right)$	98.15(3)	113.95(3)	80.01(3)
$\gamma\left({ }^{\circ}\right)$	90	95.58(3)	76.47(3)
Volume (\AA^{3})	2457.3(9)	1836.9(7)	3490.9(14)
Z	4	2	2
$D_{\text {x }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.616	1.366	1.171
$\mu\left(\mathrm{mm}^{-1}\right)$	5.947	0.685	0.735
$F(000)$	1184	788	1328
Index ranges	$-10 \leq \mathrm{h} \leq 10$,	$-15 \leq \mathrm{h} \leq 15$,	$-13 \leq \mathrm{h} \leq 13$,
	$-18 \leq k \leq 18$,	$-17 \leq k \leq 17$,	$-18 \leq \mathrm{k} \leq 18$,
	$-21 \leq 1 \leq 21$	$-17 \leq 1 \leq 17$	$-25 \leq 1 \leq 25$
Reflections collected	4372	8261	12173
Independent reflections	4187	7624	5935

Data/restraints/parameters	$4372 / 97 / 235$	$8261 / 0 / 410$	$12173 / 0 / 667$
GOF $\left(\mathrm{F}^{2}\right)$	1.127	1.070	0.794
$R_{I}[I>2 \sigma(I)]$	0.1075	0.0333	0.0566
$w R_{2}$ (all data)	0.2326	0.0977	0.1228
$R_{I}=\sum\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| \sum\left\|F_{\mathrm{o}}\right\| ; w R_{2}=\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$			

Table S2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 4, 5 and $\mathbf{6}$

Selected bond lengths for 4				Selected bond lengths for 5			
Pt1-P1	2.303(4)	Pt1-P2	2.300(4)	Pd1-P2	$2.352(8)$	Pd1-P1	2.341(1)
Pt1-Si2	$2.346(4)$	Pt1-Si1	2.355(4)	Pd1-Si2	2.372(8)	Pd1-Sil	2.338(1)
Si1-C8	1.891(13)	Sil-C7	1.900(14)	Si1-C29	1.885(2)	Sil-H1A	1.4366
Si1-C1	1.915(15)	Si2-C6	1.875(13)	P1-C21	1.821(3)	P1-C14	1.854(2)
Si2-O1	1.678(9)	Si2-O2	1.686(10)	P2-C1	1.829(2)	P2-C13	1.838(2)
Selected bond lengths for 6							
Ni1-P1	2.149(1)	Ni1-P2	2.143(1)	Ni2-P3	2.146(1)	Ni2-P4	2.144(2)
Ni1-Si1	2.261(7)	Ni1-Si4	2.274(8)	Ni2-Si2	2.274(1)	Ni2-Si3	2.260(1)
Si1-Si3	2.351(2)	Si2-Si4	2.353(2)	Si3-C7	1.911(6)	Si1-C1	$1.915(5)$
Selected bond angles for 4							
P2-Pt1-S		95.53			Pt1-P1		85.39(13)
Si2-Pt1-		173.9	(13)		Pt1-Si1		175.17(12)
Si2-Pt1-		83.24			Si1-C7		106.5(6)
C8-Si1-P		112.6			Si2-Pt1		111.6(4)
C6-Si2-O1		106.6			-Si2-O2		116.5(3)
C16-C15		110.9			-P1-C14		101.5(7)
Selected bond angles for 5							
P2-Pd1-Si2		173.87(2)		P1-Pd1-Si1			174.05(2)
P1-Pd1-P2		84.88(3)		Si2-Pd1-Sil			80.03(3)
P2-Pd1-Si1		98.72(3)		P1-Pd1-Si2			96.88(3)

P2-C13-C14	$108.30(16)$	C21-P1-C15	$106.38(11)$
C1-P2-C7	$102.56(10)$	Pd1-P2-C13	$106.03(8)$

Selected bond angles for 6

P1-Ni1-P2	$90.52(7)$	P3-Ni2-P4	$90.45(7)$
Si1-Ni1-Si4	$80.41(6)$	Si2-Ni2-Si3	$80.27(6)$
P1-Ni1-Si1	$159.44(7)$	P3-Ni2-Si3	$159.14(7)$
P1-Ni1-Si4	$98.00(7)$	P3-Ni2-Si2	$97.76(7)$
Si1-Si3-Ni2	$115.52(8)$	Si2-Si4-Ni1	$117.79(8)$
P1-C14-C13	$113.2(4)$	P4-C40-C39	$112.1(4)$
C21-P1-C15	$104.5(3)$	C47-P4-C41	$103.2(3)$

