Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Temperature Dependent Quantum Cutting in Cubic BaGdF₅:Eu³⁺ Nanophosphors

Yogendra Nath Chouryal^a[†], Rahul Kumar Sharma^{a,b}[†], Konstantin V. Ivanovskikh^{*c}, Alexey V. Ischenko^c, Qiufeng Shi^d, Vladimir Yu. Ivanov^c, Sandeep Nigam^e, Archna Pandey^a, Pushpal Ghosh^{*a}

^aSchool of Chemical Science and Technology, Department of Chemistry,

Dr.Harisingh Gour University (A Central University), Sagar-470003, M.P. India

^bDepartment of Chemistry, Government Shyam Sunder Agrawal College, Sihora-483225, M.P. India

^cInstitute of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia ^dCollege of Physics and Optoelectronics, Taiyuan University of Technology, 030024 Taiyuan, China

eChemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

[†] These two authors have equal contribution in the paper.

E-mail: pushpalghosh27@gmail.com

 $\underline{k.v.ivanovskikh@urfu.ru}$

Chemicals: 1-methylimidazolium (Alfa Aesar, 99%), Bromoethane (Himedia, 99%), Barium Acetate, $[(CH_3COO)_2.Ba]$ (Himedia, 99%), Gadolinium Nitrate Hexahydrate, $[Gd(NO_3)_3.6H_2O]$ (Alfa Aesar, 99.9%), Europium Nitrate Pentahydrate, $[Eu(NO_3)_3.5H_2O]$ (Alfa Aesar, 99.9%), Ammonium Fluoride, $[NH_4F]$ (Himedia, 97%), Acetone, $[CH_3COCH_3]$ (LobaChemie, 99.5%), Ethanol, $[C_2H_5OH]$ (Merck, ACS grade), Methanol, $[CH_3OH]$ (LobaChemie), Deionized (DI) Water, $[H_2O]$ (CDH), Acetonitrile, $[CH_3CN]$ (LobaChemie).

Synthesis of 1-Ethyl-3-methyl imidazolium bromide $[C_2mim]Br$: Modifying a literature procedure,1-ethyl-3-methylimidazolium bromide $[C_2mim]Br$ was synthesized by incorporation of 12.4 ml bromoethane (Himedia 99%) and 10 m N-methylimidazole (Sigma Aldrich 99%) followed by refluxed at 40°C for 4 hours in an inert gas (Argon) atmosphere in a two neck round

bottom flask (250 ml).¹ After the reaction completion, the obtained product was washed with ethyl acetate and stirred for 1 hour. The obtained product was dried in vacuum for 12 hours to get a white solid crystal.

NMR spectrum of 1-ethyl-3-methylimidazolium bromide ([C₂mim]Br) ionic liquid:-

¹*H NMR* δ_{*H*}/*ppm* (299*K*, 500*MHz*, *CDCl*₃): δ1.51-1.54 (3H, t, -CH₃), 2.53 (3H, s, N-CH₃) 4.32-4.36 (2H, q, N-CH₂-), 7.54-7.55 (1H, d, N-CH=), 10.12 (1H, s, N-CH-N). ¹³*C NMR* δ_{*C*}/*ppm* (299*K*, 500*MHz*, *CDCl*₃): δ 15.77 (-CH₃), 36.79 (N-CH₃), 45.34 (N-CH₂), 122.01 (N-C=), 123.77(N⁺-C=), 136.94 (N=C-N).

Figure S1a. ¹H NMR spectrum of as prepared 1-ethyl-3-methylimidazolium bromide $[C_2mim]Br$ ionic liquid.

Figure S1b. ¹³C NMR spectrum of as prepared 1-ethyl-3-methylimidazolium bromide [C₂mim]Br ionic liquid.

Figure S2. Comparative FTIR spectrum of [C₂mim]Br IL, BG1 and BG2 nanoparticles.

FTIR result indicates that (Figure S2) vibration bands in the range of 3700 to 3400 cm⁻¹ are assigned due to symmetric and asymmetric stretching vibrations of O-H of water molecules. The vibration frequencies of C(2)-H stretching vibration of imidazole ring system and stretching vibration of C-H bonds of alkyl chain length corresponding to 3136, 3064 and 3028 cm⁻¹ respectively. The imidazole ring skeleton stretching vibrationis occurred at 1467 cm⁻¹ and 1172 cm⁻¹ (CH₂ stretching). The vibration band at 1666 cm⁻¹ is observed due to stretching vibration of imidazole ring skeleton belongs to C=C. And the stretching vibrations of C-N bonds of imidazole ring system are assigned at 1031 cm⁻¹.

In above FTIR spectrum, it is observed that stretching vibration frequencies of imidazole ring system and alkyl chain length are absent. It means as-prepared nanoparticles are free of the ionic liquid.

Figure S3. Crystal structure of BaGdF₅.

Figure S4. PXRD patterns of calcined BaGdF₅: Eu³⁺ (BG1) NPs at different temperature: (i) standard BaGdF₅ JCPDS C24-98, (ii) calcined at 200 °C, (iii) calcined at 400 °C, (iv) calcined at 600 °C, (v) calcined at 700 °C and calcined at 800 °C [* indicates appearance of orthorhombic GdF₃ impurities (JCPDS card-49-804)].

Table S1.	Crystallite s	size, lattice str	ain and cryst	al phase of the	as prepared Eu ³	+ -doped BaGdF5
nanomater	rials.					

Sample Code	Sample Name	IL (Y/N)	As- prepared	Crystal Size (nm)	Average lattice strain (%)	Crystal Phase	Lattice strain
BG1	BaGdF ₅ :Eu	N	As-prepared	13.5	2.5	Cubic	Tensile
BG2	BaGdF ₅ :Eu (1%)	Y	As-prepared	11.0	3.1	Cubic	Tensile
BG3	BaGdF ₅ :Eu (2%)	Y	As-prepared	15.8	1.64	Cubic	Tensile
BG4	BaGdF ₅ :Eu (5%)	Y	As-prepared	16.7	1.4	Cubic	Tensile

Figure S5. PXRD patterns of as-prepared Eu^{3+} -doped BaGdF₅ NPs: (i) standard, (ii) 2% Eu^{3+} doped BaGdF₅ NPs with IL (BG3) and (iii) 5% Eu^{3+} doped BaGdF₅ NPs with IL (BG4).

Lattice strain of the as-prepared Eu³⁺ ion doped BaGdF₅:-

Figure S6. Lattice Strain of as-prepared Eu^{3+} -doped BaGdF₅ nanocrystals prepared without IL (BG1) and with [C₂mim]Br IL [BG2, BG3 and BG4].

Commonly, the broadenings of the diffraction peaks depend upon lattice strain and crystallite size and lattice strain can be calculated according to the equation derived by Williamson and Hall²:

$$\beta \cos \theta / \lambda = 1/D + \eta \sin \theta / \lambda \tag{1}$$

where η is the effective strain. When we are plotting $\beta \cos\theta/\lambda$ against $\sin\theta/\lambda$ the strain can be derived from the slope. The positive and negative magnitude of lattice strain indicates the tensile and compressive strain respectively.

Figure S7. FESEM images of as-prepared 1% Eu^{3+} doped BaGdF₅ (A)without IL and (B)with IL [C₂mim]Br respectively.

Figure S8. EDX and elemental mapping of $1\% \text{ Eu}^{3+}$ -doped BaGdF₅ nanomaterials without IL (BG1)

Figure S9. EDX and elemental mapping of $1\% \text{ Eu}^{3+}$ -doped BaGdF₅ nanomaterials with IL (BG2).

Figure S10. HRTEM image of 1% Eu³⁺ -doped BaGdF₅synthesized using without IL.

Figure S11. Photoluminescence excitation spectra of as-prepared BaGd₅:Eu³⁺(1%) nanoparticles synthesized: (a)without IL (BG1) and (b) with IL (BG2).

Figure S12. Decay time of 1% Eu^{3+} -doped BaGdF₅ NPs synthesized: (A) without IL (BG1) and (B) with IL [C₂mim]Br (BG2).

Figure S13. Excitation spectra of as-prepared 1% Eu³⁺-doped BaGdF₅NPs (A)10 K and (B) 295 K monitoring $\lambda_{em} = 611$ nm; C-D)excitation spectra Gd³⁺monitoredat 553 nm without and with IL [C₂mim]Br at 10K and 295 K.

Condition	Without IL (le/Im)	With IL (Ie/Im)
At RT, 202 nm	1.23	1.43
At RT, 273 nm	0.55	0.58
At RT, 393 nm	0.46	0.51
At 10 K, 202 nm	0.99	0.99
At 10 K, 273 nm	0.75	0.70

Table S2. The I_e/I_mratio of Eu³⁺-doped BaGdF₅ nanophosphors

Figure S14. Refractive index of BaGdF₅:Eu³⁺ (1%) doped NPs at different wavelength.

Calculation of Judd-Ofelt (Ω_2) Parameters and Quantum efficiency (η %)

The J-O parameter (Ω_2) provides the information on the basis of intensities or nature of the hypersensitive transition of the Eu³⁺ ions. The Judd-Ofelt parameters (Ω_2) were determined using the emission spectra of Eu³⁺ ions resulting of ${}^5D_0{}^{-7}F_1$ magnetic dipole allowed and ${}^5D_0{}^{-7}F_2$ electric dipole allowed transitions and its value can be determined using equation 2.³

$$A = \frac{4e^2\omega^3}{3hc^3} \frac{1}{2J+1} \chi \sum \Omega_2 \langle {}^5D_0 \| U^{(2)} \| {}^7F_2 \rangle^2$$
(2)

Where A is the coefficient of spontaneous emission, ω is the angular frequency, e is the electronic charge, c is the velocity of light, h is the Planck's constant, χ is the Lorentz local field correction and it can be further expressed as $\chi = \eta (\eta^{2}+2)^{2}/9$, where η is the refractive index of the sample, $\langle {}^{5}D_{0} || U^{(2)} || {}^{7}F_{2} \rangle^{2}$ is the squared reduced matrix elements and its value is independent of the chemical environment of the ion and it is 0.0039 for J=2. Since the magnetic dipole transition is relatively insensitive to the chemical environment around the Eu³⁺ ion, so it can be regarded as a reference for the entire spectrum. The coefficient of spontaneous emission can be determined using the following equation.³

$$A_{0J} = A_{01} (I_{0J} / I_{01}) (\gamma_{01} / \gamma_{0J})$$
(3)

Where A_{01} is the Einstein's coefficient between ${}^{5}D_{0}-{}^{7}F_{1}$ levels and it can be determined using $A_{01} = \eta^{3}(A_{0-1})_{vac}$; where η is the refractive index of the sample and $(A_{0-1})_{vac} = 14.65 \text{ s}^{-1}$. Refractive index of BaGdF₅:Eu³⁺ is determined using Ellipsometerand is found to be 1.4049. However, γ_{01} and γ_{0J} are the energy barycentre of the ${}^{5}D_{0}-{}^{7}F_{1}$ and ${}^{5}D_{0}-{}^{7}F_{1}$ transitions, respectively.

Radiative (A_{rad}), non-radiative (A_{nrad}) transition and average decay time can be correlated by following expression³

$$A_{tot} = \frac{1}{\tau} = A_{rad} + A_{nrad} \tag{4}$$

Where A_{rad} can be determined using the following expression³

$$A_{rad} = A_{01} \frac{\gamma_{01}}{I_{01}} \sum_{J=0}^{2} \frac{I_{0J}}{\gamma_{0J}} = \sum_{J} A_{0J}$$
(5)

Quantum efficiency is the ratio of number of photons emitted to the number of photons absorbed by the Eu³⁺ ion and it is the balance between radiative and non-radiative processes, and it can be calculated by following equation³

$$\eta = \frac{A_{rad}}{A_{rad} + A_{nrad}} \tag{6}$$

References

- 1 R. K. Sharma, Y. N. Chouryal, S. Chaudhari, J. Saravanakumar, S. R. Dey and P. Ghosh, *ACS Appl. Mater. Interfaces*, 2017, **9**, 11651–11661.
- 2 R. K. Sharma, S. Nigam, Y. N. Chouryal, S. Nema, S. P. Bera, Y. Bhargava and P. Ghosh, *ACS Appl. Nano Mater.*, 2019, **2**, 927–936.
- 3 P. Ghosh, A. Kar and A. Patra, J. Appl. Phys. 2010, 108, 1–8.