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Chemicals: 1-methylimidazolium (Alfa Aesar, 99%), Bromoethane (Himedia, 99%), Barium
Acetate, [(CH3COQ),.Ba] (Himedia, 99%), Gadolinium Nitrate Hexahydrate, [Gd(NOs3);.6H,0]
(Alfa Aesar, 99.9%), Europium Nitrate Pentahydrate, [Eu(NO;);.5H,0] (Alfa Aesar, 99.9%),
Ammonium Fluoride, [NH4F] (Himedia, 97%), Acetone, [CH;COCHj;] (LobaChemie, 99.5%),
Ethanol, [C,HsOH] (Merck, ACS grade), Methanol, [CH;0H] (LobaChemie), Deionized (DI)
Water, [H,O] (CDH), Acetonitrile, [CH;CN] (LobaChemie).

Synthesis of 1-Ethyl-3-methyl imidazolium bromide [C,mim|Br: Modifying a literature
procedure, 1-ethyl-3-methylimidazolium bromide [C,mim]Br was synthesized by incorporation
of 12.4 ml bromoethane (Himedia 99%) and 10 m N-methylimidazole (Sigma Aldrich 99%)

followed by refluxed at 40°C for 4 hours in an inert gas (Argon) atmosphere in a two neck round
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bottom flask (250 ml).! After the reaction completion, the obtained product was washed with
ethyl acetate and stirred for 1 hour. The obtained product was dried in vacuum for 12 hours to

get a white solid crystal.

NMR spectrum of 1-ethyl-3-methylimidazolium bromide (|C,mim|Br) ionic liquid:-
TH NMR 6/ppm (299K, 500MHz, CDCI;): 61.51-1.54 (3H, t, -CH3), 2.53 (3H, s, N-CH3)
4.32-4.36 (2H, q, N-CH;-), 7.54-7.55 (1H, d, N-CH=), 10.12 (1H, s, N-CH-N).

BC NMR 6c/ppm (299K, 500MHz, CDCl3): 8 15.77 (-CHj3), 36.79 (N-CH3;), 45.34 (N-CH,),
122.01 (N-C=), 123.77(N*-C=), 136.94 (N=C-N).
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Figure S1a. "H NMR spectrum of as prepared 1-ethyl-3-methylimidazolium bromide [C,mim]Br
ionic liquid.
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Figure S1b. 13C NMR spectrum of as prepared 1-ethyl-3-methylimidazolium bromide

[C,mim]Br ionic liquid.
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Figure S2. Comparative FTIR spectrum of [C,mim]Br IL, BG1 and BG2 nanoparticles.




FTIR result indicates that (Figure S2) vibration bands in the range of 3700 to 3400 cm! are
assigned due to symmetric and asymmetric stretching vibrations of O-H of water molecules. The
vibration frequencies of C(2)-H stretching vibration of imidazole ring system and stretching
vibration of C-H bonds of alkyl chain length corresponding to 3136, 3064 and 3028 cm!
respectively. The imidazole ring skeleton stretching vibrationis occurred at 1467 cm™! and 1172
cm! (CH; stretching). The vibration band at 1666 cm! is observed due to stretching vibration of
imidazole ring skeleton belongs to C=C. And the stretching vibrations of C-N bonds of

imidazole ring system are assigned at 1031 cm-!.

In above FTIR spectrum, it is observed that stretching vibration frequencies of imidazole ring
system and alkyl chain length are absent. It means as-prepared nanoparticles are free of the ionic

liquid.

Figure S3. Crystal structure of BaGdFs.
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Figure S4. PXRD patterns of calcined BaGdFs: Eu** (BG1) NPs at different temperature: (i)
standard BaGdF; JCPDS (C24-98, (ii) calcined at 200 °C, (iii) calcined at 400 °C, (iv) calcined at
600 °C, (v) calcined at 700 °C and calcined at 800 °C [* indicates appearance of orthorhombic
GdF; impurities (JCPDS card-49-804)].

Table S1. Crystallite size, lattice strain and crystal phase of the as prepared Eu** -doped BaGdFs
nanomaterials.

Sample | Sample Name IL | As- Crystal | Average | Crystal | Lattice
Code (Y/N) | prepared Size lattice Phase | strain
(nm) strain
(%)
BGI1 BaGdFs:Eu N As-prepared 13.5 2.5 Cubic Tensile
BG2 BaGdFs:Eu (1%) Y As-prepared 11.0 3.1 Cubic Tensile
BG3 BaGdFs:Eu (2%) Y As-prepared 15.8 1.64 Cubic Tensile
BG4 BaGdFs:Eu (5%) Y As-prepared 16.7 1.4 Cubic Tensile
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Figure S5. PXRD patterns of as-prepared Eu**-doped BaGdFs NPs: (i) standard, (ii) 2% Eu®*
doped BaGdFs NPs with IL (BG3) and (iii) 5% Eu®** doped BaGdFs NPs with IL (BG4).

Lattice strain of the as-prepared Eu’* ion doped BaGdFs5:-
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Figure S6. Lattice Strain of as-prepared Eu’’ -doped BaGdF nanocrystals prepared without IL
(BG1) and with [C mim]Br IL [BG2, BG3 and BG4].



Commonly, the broadenings of the diffraction peaks depend upon lattice strain and crystallite
size and lattice strain can be calculated according to the equation derived by Williamson and
Hall?:

peosO/A = 1/D + nsin /A (1)

where 7 is the effective strain.When we are plotting fcosf/A against sin 6/A the strain can be

derived from the slope. The positive and negative magnitude of lattice strain indicates the tensile

and compressive strain respectively.
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Figure S7. FESEM images of as-prepared 1% Eu*" doped BaGdF5 (A)without IL and (B)with IL

[Comim]Br respectively.
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Figure S8. EDX and elemental mapping of 1% Eu*' -doped BaGdFs nanomaterials without IL
(BGI1)
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Figure S9. EDX and elemental mapping of 1% Eu’" -doped BaGdFs nanomaterials with IL
(BG2).

Figure S10. HRTEM image of 1% Eu*" -doped BaGdFssynthesized using without IL.
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Figure S11. Photoluminescence excitation spectra of as-prepared BaGds:Eu?*(1%) nanoparticles

synthesized: (a)without IL (BG1) and (b) with IL (BG2).
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Figure S12. Decay time of 1% Eu*' -doped BaGdFs NPs synthesized: (A) without IL (BG1) and
(B) with IL [C,mim]Br (BG2).
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Figure S13. Excitation spectra of as-prepared 1% Eu’*-doped BaGdFsNPs (A)10 K and (B) 295
K monitoring A, = 611 nm; C-D)excitation spectra Gd**monitoredat 553 nm without and with

IL [C,mim]Br at 10K and 295 K.

Table S2. The I./Iratio of Eu’"-doped BaGdFs nanophosphors

Condition Without IL (le/Im) With IL (le/Im)
At RT, 202 nm 1.23 1.43
At RT, 273 nm 0.55 0.58
At RT, 393 nm 0.46 0.51
At 10K, 202 nm 0.99 0.99
At 10K, 273 nm 0.75 0.70
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Figure S14. Refractive index of BaGdFs:Eu** (1%) doped NPs at different wavelength.

Calculation of Judd-Ofelt (2,) Parameters and Quantum efficiency (n%)

The J-O parameter (€);) provides the information on the basis of intensities or nature of the
hypersensitive transition of the Eu** ions. The Judd-Ofelt parameters (£2,) were determined using
the emission spectra of Eu’' ions resulting of 3Dy-’F; magnetic dipole allowed and Dy-'F,

electric dipole allowed transitions and its value can be determined using equation 2.3

_ 4w’ 1

_WEZZQZGDO U || "F,)? (2)

Where A is the coefficient of spontaneous emission, ® is the angular frequency, e is the
electronic charge, c is the velocity of light, h is the Planck’s constant, y is the Lorentz local field
correction and it can be further expressed as y =n (?+2)%/9, where 1 is the refractive index of the

sample, (°D, || U || "F,)* is the squared reduced matrix elements and its value is independent of

the chemical environment of the ion and it is 0.0039 for J=2. Since the magnetic dipole transition
is relatively insensitive to the chemical environment around the Eu3* ion, so it can be regarded as
a reference for the entire spectrum. The coefficient of spontaneous emission can be determined

using the following equation.’
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Where A, is the Einstein’s coefficient between Dy-"F; levels and it can be determined using A,
= N3(Ao¢.1)vac; Where 1 is the refractive index of the sample and (A.)vac= 14.65 s7!. Refractive
index of BaGdFs:Eu?' is determined using Ellipsometerand is found to be 1.4049.However, v,

and yo; are the energy barycentre of the D-"F; and D,-’F transitions, respectively

Radiative (A;.q), non-radiative (Ay.g) transition and average decay time can be correlated by

following expression?
1
Atot = ; = Arad + Anrad (4)

Where A4 can be determined using the following expression?
2
¥, 1
A = Ay, iz o= ZAOJ )
Loy 270 7

Quantum efficiency is the ratio of number of photons emitted to the number of photons absorbed
by the Eu®* ion and it is the balance between radiative and non-radiative processes, and it can be

calculated by following equation?

Arad

=t A ®

rad nrad
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