Supplementary Information

Solvent-free hydroamination of phenylacetylene by plasmonic gold nanoparticles coupled with TiO₂ 2D photonic layer on nanotube array

Jie Meng,^a Yunheng Xiao,^a Yiming Huang,^b Xuguang Liu^a and Jian Zhao^{*a}

^a Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

^b State Key Laboratory of the Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China

Corresponding Author E-mail: zjtjbd@hotmail.com; zjtjbd@email.tjut.edu.cn Reactor device (a) and experiment setup (b).

Fig. S1 SEM images of nano-imprints after removing TiO_2 NTs formed at a) 30 V and b) 50 V in first-step anodization.

Fig. S2 An example of SEM image in large scale for TiO_2 PCNTs.

Fig. S3 SEM image of TiO_2 NTs formed with applied potential 50 V for 1 h.

Catalyst	Intensity ratio of	Peak area of	Peak area ratio of
	(004)/(101)	(004)/(101)	(004)/(101)
TiO ₂ NTs	1.08	137474/79002	1.74
TiO ₂ PCNTs	1.32	254258/88178	2.88
Au/TiO ₂ NTs	1.03	129785/81012	1.60
Au/TiO ₂ PCNTs	1.17	228440/87248	2.62

Table. S1 The summary of XRD analysis for TiO_2 NTs, TiO_2 PCNTs, Au/TiO₂ NTs and Au/TiO₂ PCNTs.

Fig. S4 TEM images of Au/TiO₂ PCNTs.

Element	Weight percent	Atom percent
СК	3.03	6.49
O K	39.99	64.18
Ti K	53.99	28.94
Au M	2.99	0.39
Total	100.00	

Fig. S5 SEM-EDS mapping of Au atom percent analyzed from top view.

Fig. S6 XPS of a) C1s, b) O1s, c) Au4f and d) Ti2p for Au/TiO₂ PCNTs scratched off from Ti foil surface.

Fig. S7 Digital photograph of the prepared samples and scratched powder from Ti foil. a, e) TiO₂ NTs; b, f) TiO₂ PCNTs; c, g) Au/TiO₂ NTs; d, h) Au/TiO₂ PCNTs.

Fig. S8 Imine product yields for hydroamination of phenylacetylene with aniline.

Table.	S2 The	summary	of Au c	content in	Au/TiO_2	NTs and	Au/TiO_2	PCNTs t	ested by
ICP.									

Samples	Entry	Raw data (µg)	Average value (µg)	Content (mmol)	
		per slice	per slice	per slice	
Au/TiO ₂ NTs	1	1.960			
	2	4.257	5 050	2.568*10 ⁻⁵	
	3	8.961	5.055		
Au/TiO ₂ PCNTs	1	7.296			
	2	8.261	8.737	4.435*10 ⁻⁵	
	3	10.654			

Catalyst	Reaction condition	Yield (mmol)	TON ^a	TOF (h ⁻¹)	Ref
Au/TiO ₂ PCNTs	visible light, 55 °C	13.1×10 ⁻³	294.8	42.1	This
					work
Au _n -SiO ₂ @ICRM	Room temperature	0.215	43	1.79	1
Au/TiO ₂ +H ₃ PO ₄ ·12WO ₃	80 °C	0. 92	460	38.3	2
Au/C	100 °C	0.5~0.7	24~35	1~1.5	3
Au/TiO ₂ (B).N	visible light, 40 °C	0.4	104	4.16	4
Au-Ch(I)SiO ₂	100 °C	0.92	83.6	3.8	5
AuCo/ZrO ₂	visible light, 80 °C	0.95	187.2	7.8	6

Table. S3 The comparison of activity for hydroamination of phenylacetylene with aniline over different catalysts.

^a TON is calculated on the mole of Au content.

[1] L. C. Lee and Y. Zhao, ACS Catal., 2014, 4, 688-691.

[2] S. Z. Liang, L. Hammond, B. Xu, G. B. Hammond and B. Geral, Adv. Syn. Catal., 2016, 358, 3313-3318.

[3] A. Seral-Ascaso, A. Luquin, M. J. Lázaro, G. F. de la Fuente, M. Laguna and E. Muoz, Appl. Catal. A: General, 2013, 456, 88-95.

[4] J. Zhao, Z. F. Zheng, S. Bottle, A. Chou, S. Sarina and H. Y. Zhu, Chem. Commun., 2013, 49, 2676-2678.

[5] A. Corma , P. Concepción, I. Domínguez, V. Fornés and M. J. Sabater, J. Catal., 2007, 251, 39-47.

[6] E. Peiris, S. Sarina, E. R. Waclawik, G. A. Ayoko, P. F. Han, J. F. Jia and H. Y. Zhu, Angew. Chem. Int. Ed., 2019, 131, 12160-12164.

Fig. S9 a) The LSV and b) I-t curves at 1.23 V vs. RHE for Au/TiO₂ NTs and Au/TiO₂ PCNTs under light and in the dark. The test was conducted in 1.0 M KOH aqueous solution, Xe lamp with light filter (> 400 nm).

Fig. S10 The influence of reactant molar ratio on the imine yield (TON) for Au/TiO₂ PCNTs.