Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## **Supporting Information**

## Effects of repeat unit charge density on physical and electrochemical properties of novel heterocationic poly(ionic liquid)s

Merlin Cotessat,<sup>[a]</sup> Dimitri Flachard,<sup>[b]</sup> Daniil Nosov,<sup>[a]</sup>Elena I. Lozinskaya,<sup>[c]</sup> Denis O.
Ponkratov,<sup>[c]</sup> Daniel F. Schmidt,<sup>[a]</sup> Eric Drockenmuller<sup>\*[b]</sup> and Alexander S. Shaplov<sup>\*[a]</sup>
<sup>a</sup>Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Eschsur-Alzette, Luxembourg

<sup>b</sup>Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France

<sup>c</sup>A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov str. 28, 119991, Moscow, Russia

\* Corresponding authors:

E-mails: alexander.shaplov@list.lu and eric.drockenmuller@univ-lyon1.fr



**Figure S1.** <sup>1</sup>H (a) and <sup>13</sup>C (b) NMR of monomer **3** (25 °C, DMSO- $d_6$ ).



Figure S3. FT-IR spectrum of monomer 3.



Figure S4. <sup>1</sup>H (a) and <sup>13</sup>C (b) NMR of monomer 4 (25 °C, DMSO- $d_6$ ).



Figure S5. <sup>19</sup>F NMR of monomer 4 (25 °C, DMSO-*d*<sub>6</sub>).



Figure S6. FT-IR spectrum of monomer 4.



**Figure S7.** <sup>1</sup>H (a) and <sup>13</sup>C (b) NMR of polymer **10** (25 °C, DMSO- $d_6$ ).



Figure S8. HSQC of polymer 10 (25 °C, DMSO- $d_6$ ).



Figure S9. FT-IR spectrum of polymer 10.



**Figure S10.** <sup>1</sup>H (a) and <sup>13</sup>C (b) NMR of polymer **14** (25 °C, DMSO- $d_6$ ).



Figure S11. <sup>19</sup>F NMR of polymer 14 (25 °C, DMSO- $d_6$ ).



Figure S12. FT-IR spectrum of polymer 14.



Figure S13. <sup>1</sup>H NMR of polymers 7 (a), **8** (b), **9** (c), **13** (d) and **15** (e) (25 °C, DMSO- $d_6$ ).



Figure S14. <sup>13</sup>C NMR of polymers 7 (a), **8** (b), **9** (c), **13** (d) and **15** (e) (25 °C, DMSO- $d_6$ ).



Figure S15. DSC curve for monomer 3 (second heating cycle, 3°C min<sup>-1</sup>).



Figure S16. DSC curves for monomer 4 (second heating/cooling cycle, 3°C min<sup>-1</sup>).

Examples of DSC curves:



Figure S17. DSC curve for polymer 10 (second heating cycle, 10°C min<sup>-1</sup>).



Figure S18. DSC curve for polymer 14 (second heating cycle, 10°C min<sup>-1</sup>).

DSC

DSC



Figure S19. TGA traces of PILs (5°C min<sup>-1</sup>, under air).



Figure S20. Ionic conductivity at 25°C vs  $T_g$  of PILs.



Figure S21. Ionic conductivity at 25°C vs charge density of PILs.