Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Facile Synthesis of Porous C-Doped g-C₃N₄: Fast Charge Separation and Enhanced Photocatalytic Hydrogen Evolution

Yabin Jiang, a Zhuogeng Lin, a Yuying Zhang, a Yuecheng Lai, a Dong Liang, a Chunzhen

Yang,^{a*}

^a School of Materials, Sun Yat-sen University, Guangzhou, 510006, China Corresponds to <u>yangchzh6@mail.sysu.edu.cn</u>

Fig. S1. The possible polymerization process to generate C-g-C₃N₄.

Fig. S2. The enlarged TEM images of CDCN-20.

From the enlarged TEM images, we can surely observe that CDCN-20 show porous and thinner nanosheet structure by adding the acrylamide as gas bubble.

Fig. S3. The (0 0 2) peak of XRD patterns of CN and CDCN-20.

Fig. S4. The solid state ¹³C CP MAS NMR spectra of CN and CDCN-20.

Fig. S5. High-resolution XPS spectra of O1s of CN and CDCN-20.

Fig. S6. long-term H_2 evolution by CDCN-20 under visible light irradiation.

Fig. S7. XRD patterns of CDCN-20 before and after circle reaction.

Fig. S8. Photoluminescence spectra of CN and CDCN-20.

Fig. S9. The color variation of the g-C₃N₄ based material.

Adding trace amount of acrylamide can cause the change of the product color from light yellow to dark brown.

Fig. S10. Band energy level of CN and CDCN-20.

Fig. S11. Mott–Schottky plots of CN (a) and CDCN-20 (b) under different frequency 1000 Hz and 1500 Hz.

Table S1 Results of organic elemental analyses for CN and CDCN-x (x=10,

sample	N/%	C/%	H/%	C/N ^a
CN	58.03	33.21	2.381	0.6677
CDCN-10	58.73	34.11	2.39	0.6776
CDCN-20	58.12	33.8	2.233	0.6785
CDCN-40	54.67	34.72	2.58	0.7409

a: mola radio

Table S2 Area ratios of the C and N atoms in different chemical states of

CN and CN	A20 samples.
-----------	--------------

Sample	C1s			N1s		
	Position(ev)	Assign	Ratio(at%)	Position(ev)	Assign	Ratio(at%)
CN	284.8	C-C	10.9	398.8	C-N=C	75.9
	288.1	N=C-N	89.1	400.1	N-C ₃	24.1
				401.1	C-N-H	
CDCN-	284.8	C-C	15.6	398.8	C-N=C	76.8
20	288.1	N=C-N	84.4	400.1	N-C ₃	23.2
				401.1	C-N-H	

 Table S3 Comparison of the photocatalytic performance and synthetic

 approach of CDCN-20 with other C-doped photocatalysts reported recently

 in the literature.

Photocatalyst	Precursor	synthesis	Application	Enhanced photocatalytic activity/pristine	Ref.
CDCN-20	Dicyandiamide Acrylamide	Thermal polymerization	H ₂ evolution	3.4 times	This work
C-g-C ₃ N ₄	Melamine pretreated with absolute ethanol	Polycondensation	RhB degradation	4.47 times	[1]
5M-CF	Melamine and melamine porous resin foam	Polycondensation	NO removal	3.8 times	[2]
CCN	Glucose Melamine	Hydrothermal	4-nitropheol degradation	Enhanced	[3]
$C_2/g-C_3N_4$	g-C ₃ N ₄ Glucose	Hydrothermal	MB degradation	1.32 times	[4]
C2GCN	Dicyandiamide β-cyclodextrin	Thermal polymerization	H ₂ evolution	5 times	[5]
C-g-C ₃ N ₄	Melamine and cyanuricacid weredissolved in ethylene	Annealing	H ₂ evolution	15 times	[6]
CCN-0.2	Melamine cyanuric acid Chitosan	Thermal polymerization	H ₂ evolution	29.1 times	[7]
BTPMC g-	Urea Kapok fibro	Thermal	BPA	Enhanced	[8]
CN-C	Urea Saccharose	Co-pyrolysis	NO removal	1.7 times	[9]

References:

[1] G. Dong, K. Zhao, L. Zhang. Chem. Commun., 2012, 48, 6178-6180

[2] Z. Zhao, Y. Sun, F. Dong, Y. Zhang, H. Zhao. RSC Adv., 2015, 5, 39549-39556

[3] P. Zhang, X. Li, C. Shao, Y. Liu. J. Mater. Chem. A., 2015, 3, 3281-3284

[4] Y. Li, S. Wu, L. Huang, J. Wang, H. Xu, H. Li. Mater. Lett., 2014, 137, 281-284.

[5] E. S. Dasilva, N. M. M. Moura, A. Coutinho, G. Drai, B. M. S. Teixeira, N. A. Sobolev, C. G.

Silva, M. G. M. S. Neves, M. Prieto, J. L. Faria. ChemSusChem, 2018, 11, 2681-2694.

[6] F. Su, C. Xu, Y. Yu, W. Zhang. ChemCatChem.2016, 8, 3527-3535.

[7] G. Liu, M. Xue, Q. Liu, H. Yang and Y. Zhou, J. Colloid Interface Sci., 2019, 552, 728-734.

[8] M. A. Mohamed, M. F. M. Zain, L. Jeffery Minggu, M. B. Kassim, N. A. Saidina Amin, W. N.

W. Salleh, M. N. I. Salehmin, M. F. Md Nasir and Z. A. Mohd Hir, *Appl. Catal.*, *B*, 2018, **236**, 265-279.

[9] M. Ran, J. Li, W. Cui, Y. Li, P. Li and F. Dong, Catal. Sci. Technol., 2018, 8, 3387-3394.