Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

One-pot synthesis porous nanosphere Ni_{0.85}Se on graphene

as efficient and durable electrocatalyst for overall water

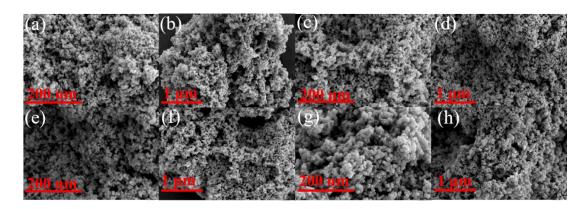
splitting

Guigui Liu^a, Chao Shuai ^a, Zunli Mo* ^a, Ruibin Guo ^a, Nijuan Liu^a, Xiaohui Niu^a,

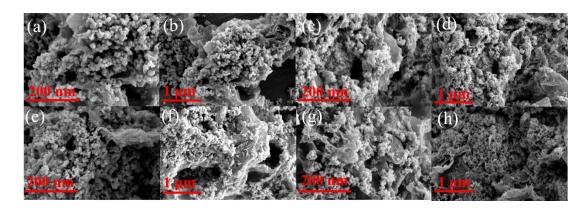
Qibing Dong a, Jia Wang a, Qinqin Gao a, Ying Chen a, Wentong Liu a

(a Research Center of Gansu Military and Civilian Integration Advanced Structural

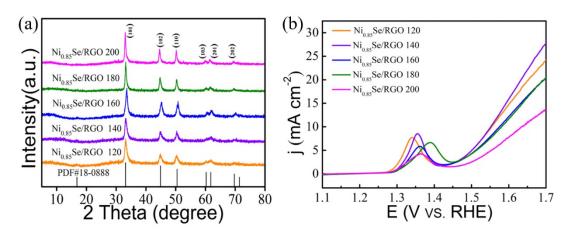
Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry

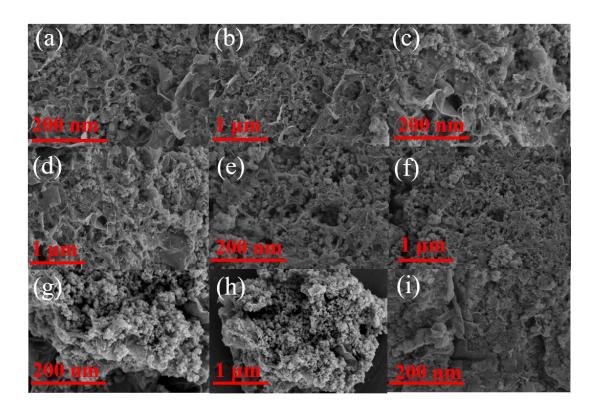

of Education of China, Key Laboratory of Polymer Materials of Gansu Province,

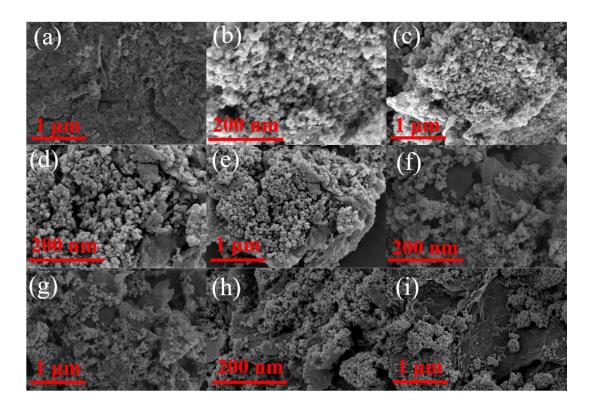
College of Chemistry and Chemical Engineering, Northwest Normal University,

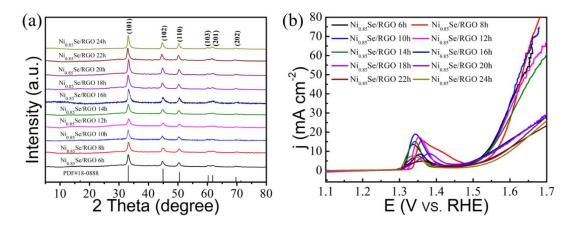

Lanzhou 730070, China)

* Corresponding author. Tel.: +86-13919467372


Email address: mozlnwnu@126.com


Figure S1. SEM images of $Ni_{0.85}Se$ under the different hydrothermal temperature conditions (with the hydrothermal time is 10 h): (a, b) $120 \, ^{\circ}C$, (c, d) $160 \, ^{\circ}C$, (e, f) $180 \, ^{\circ}C$ and (g, h) $200 \, ^{\circ}C$.


Figure S2. SEM images of $Ni_{0.85}$ Se/RGO under the different hydrothermal temperature conditions (with the hydrothermal time is 10 h): (a, b) $120 \, ^{\circ}$ C, (c, d) $160 \, ^{\circ}$ C, (e, f) $180 \, ^{\circ}$ C and (g, h) $200 \, ^{\circ}$ C.


Figure S3. (a) The XRD patterns and (b) the polarization curves of the $Ni_{0.85}Se/RGO$ in different temperature conditions (with the hydrothermal time is 10h).

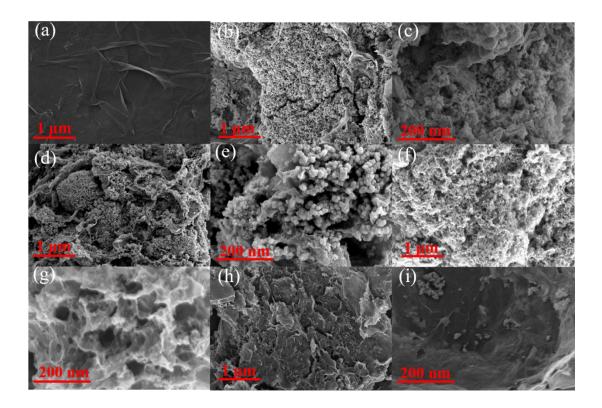

Figure S4. SEM images of $Ni_{0.85}$ Se/RGO under the different hydrothermal time conditions (with the hydrothermal temperature is 140 °C): (a, b) 6 h, (c, d) 8 h, (e, f) 12 h, (g, h) 14 h and (i) 16 h.

Figure S5. SEM images of $Ni_{0.85}$ Se/RGO under the different hydrothermal time conditions (with the hydrothermal temperature is 140 °C): (a) 16 h, (b, c) 18 h, (d, e) 20 h, (f, g) 20 h and (i) 24 h.

Figure S6. (a) The XRD patterns and the polarization curves of the Ni_{0.85}Se/RGO in different time conditions (with the hydrothermal temperature is 140 °C).

Figure S7. SEM images of $Ni_{0.85}Se/RGO$ synthesized by varying the GO mass: (a) RGO, (b, c) $Ni_{0.85}Se/RGO$ -1, (d, e) $Ni_{0.85}Se/RGO$ -2, (f, g) $Ni_{0.85}Se/RGO$ -4 and (h, i) $Ni_{0.85}Se/RGO$ -5.

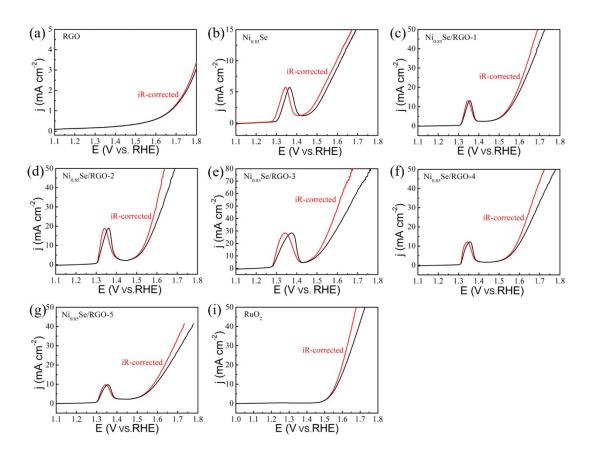



Figure S8. OER polarization curves of catalysts with and without iR compensation on GCE in 1.0 M KOH. The solution series resistances (R_s) were determined by the EIS, all of the catalysts show the similar R_s (~7 Ω).

Figure S9. (a) the polarization curves and (b) Tafel plots derived from (a) of the various Ni_{0.85}Se/RGO composites.

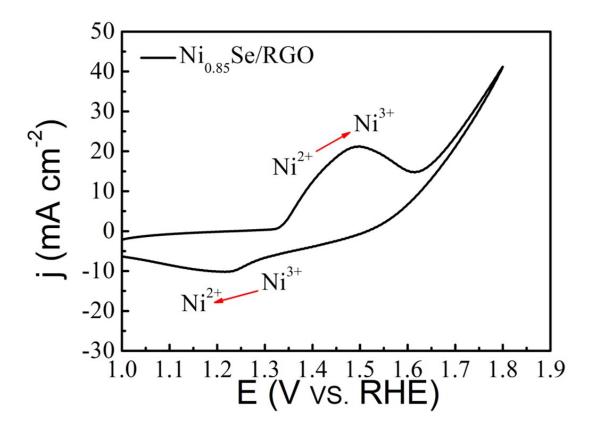
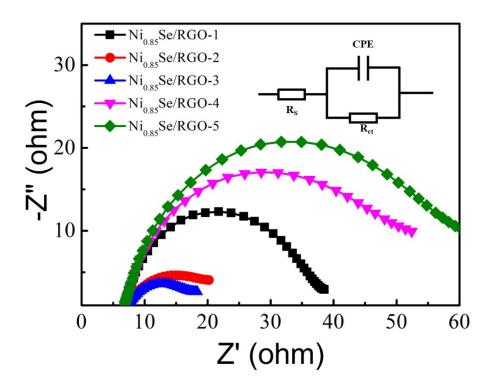
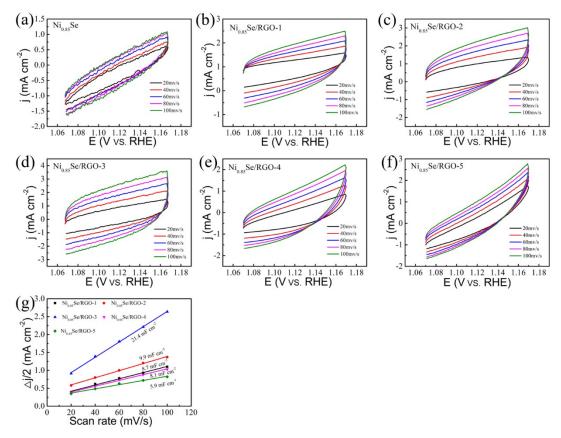
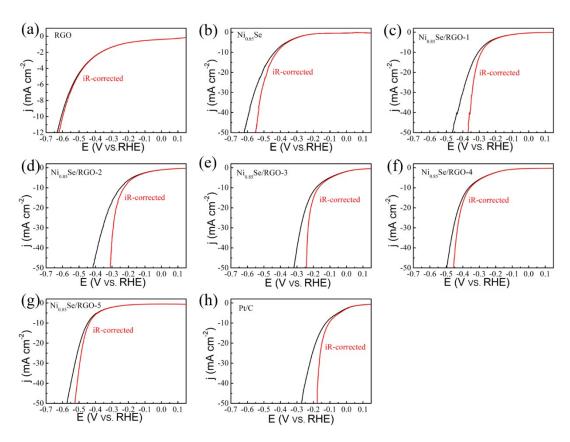
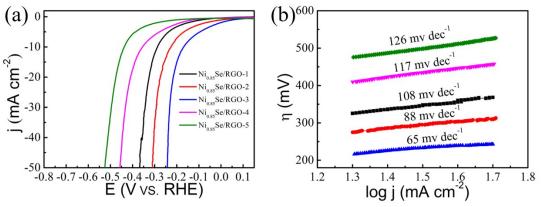
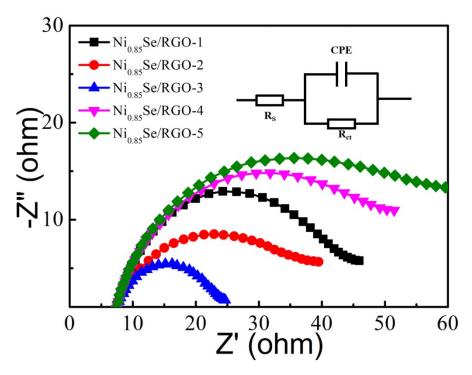




Figure S10. Cyclic voltammetry of Ni_{0.85}Se/RGO electrode.

Figure S11. OER Nyquist plots of the various Ni_{0.85}Se/RGO composites at a potential of 1.42 V (vs. RHE), equivalent circuit model (the inset).

Figure S12. (a-f) Cyclic voltammograms at different scan rate for Ni_{0.85}Se and the various Ni_{0.85}Se/RGO composites; (g) Capacitive currents at 1.12 mV vs. RHE of various Ni_{0.85}Se/RGO composites for electrocatalytic OER.

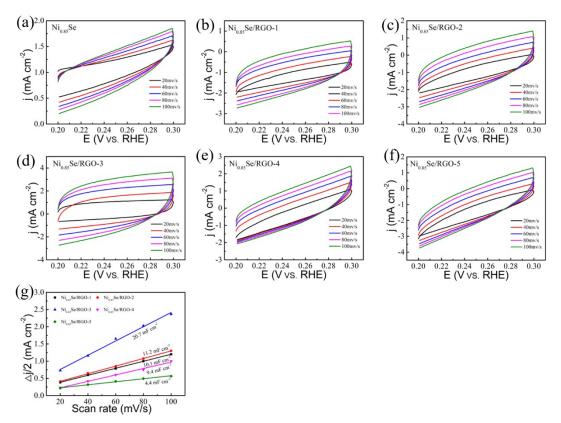

Figure S13. HER polarization curves of catalysts with and without iR compensation on GCE in 1.0 M KOH. The solution series resistances (R_s) were determined by the EIS, all of the catalysts show the similar R_s (\sim 7 Ω).

Figure S14. (a) the polarization curves and (b) Tafel plots derived from (a) of the various Ni_{0.85}Se/RGO composites.

Figure S15. HER Nyquist plots of the various Ni_{0.85}Se/RGO composites at a potential of -0.35 V (vs. RHE), equivalent circuit model (the inset).

Figure S16. (a-f) Cyclic voltammograms at different scan rate for $Ni_{0.85}Se$ and the various $Ni_{0.85}Se/RGO$ composites; (g) Capacitive currents at 0.25 mV vs. RHE of various $Ni_{0.85}Se/RGO$ composites for electrocatalytic HER.

Calculation of activity and turnover frequency

Mass activity (J, A g-1) and turnover frequency (TOF) were evaluated at an overpotential of η = 300 mV vs RHE.

The mass activity was calculated from the catalyst loading m (0.35 mg cm⁻²) and the measured current density J (mA cm⁻²).

Mass activity =
$$J/m$$

Turnover frequency was calculated by the following equation:

$$TOF = (J \times A)/(4 \times F \times n)$$

Where J is the current density at a given overpotential, A is the surface area of the electrode, the number of 4 represents 4 electrons/mol of O_2 , F is the Faraday constant (96485.3 C mol⁻¹), and n stands for the number of moles of Ni ions in Ni_{0.85}Se and Ni_{0.85}Se/RGO [S3].

Table S1 Experimental conditions for the preparation of Ni_{0.85}Se/RGO Catalysts

Catalysts	NiCl ₂ ·6H ₂ O (mg)	Se (mg)	GO (mg)
Ni _{0.85} Se/RGO-1	607	237	30
Ni _{0.85} Se/RGO-2	607	237	60
Ni _{0.85} Se/RGO-3	607	237	90
Ni _{0.85} Se/RGO-4	607	237	120
Ni _{0.85} Se/RGO-5	607	237	150

 Table S2 Summary of OER performances of some catalysts in previous works.

catalysts	η (mV)	j (mA cm ⁻²)	reference
Ni _{0.85} Se/RGO	30	320	This work
$Ni_{0.85}Se$	10	367	This work
Ni _{0.85} Se/GS	10	302	[S1]
Ti@Ni _{0.85} Se	30	270	[S2]
NiSe-Ni _{0.85} Se/CP	10	300	[S3]
Co ₉ S ₈ @MoS ₂ /CNF	10	430	[S4]
Ni(OH ₎₂	10	300	[S5]
N-graphene-CoO	10	340	[S6]
NiSe@NiOOH/NF	50	332	[S7]
NiCo ₂ S ₄ /RGO	10	366	[S8]
Ni@graphene	10	370	[S9]
NixCo _{3-x} O ₄	10	420	[S10]

 Table S3 Summary of HER performances of some catalysts in previous works.

catalysts	j (mA cm ⁻²)	η (mV)	reference
Ni _{0.85} Se/RGO	10	169	This work
$Ni_{0.85}Se$	10	437	This work
Ni _{0.85} Se/GS	10	200	[S1]
Ti@Ni _{0.85} Se	30	120	[S2]
NiSe-Ni _{0.85} Se/CP	10	101	[83]
Co ₉ S ₈ @MoS ₂ /CNF	10	190	[S4]
Ni_3S_2	10	223	[S11]
NiSe	10	187	[S12]
NiSe ₂	40	200	[S13]
NiSe ₂ @NG	10	248	[S14]
Ni1Co1 - P	10	169	[S15]
Ni _{0.85} Se-SnO ₂	25	290	[S16]

Table S4 Summary of overall water splitting performances of some catalysts in previous works.

catalysts	j (mA cm ⁻²)	overall water splitting performance (V)	reference
Ni _{0.85} Se/RGO	10	1.64	This work
Ni _{0.85} Se/GS	10	1.7	[S1]
Ti@Ni _{0.85} Se	10	1.66	[S2]
NiSe-Ni _{0.85} Se/CP	10	1.62	[83]
Mo-Ni ₃ S ₂ /NF	10	1.49	[S17]
Ni@NC	10	1.6	[S18]
NiFe/NiCo ₂ O ₄ /NF	10	1.67	[S19]

- Note: GS, graphite substrate; CNF, carbon nanofibers; NF, Ni foam; CP, carbon fiber paper.
- [S1] X. Wu, D. He, H. Zhang, H. Li, Z. Li, B. Yang, X. Zhang, Ni_{0.85}Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. International Journal of Hydrogen Energy, (2016) 10688-10694.
- [S2] C. Yang, J. Zhang, G. Gao, D. Liu, R. Liu, R. Fan, Y. Wang, 3D Metallic Ti@Ni₀. 85Se with triple hierarchy as high-efficiency electrocatalyst for overall water splitting. ChemSusChem, (2019) 2271-2277.
- [S3] Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian, H. Fu, NiSe-Ni_{0.85}Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting. Small, (2018) 1800763.
- [S4] H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Adv Mater. (2015) 4752-4759.
- [S5] L-A. Stern, X. Hu, Enhanced oxygen evolution activity by NiO_x and Ni(OH)₂ nanoparticles. Faraday Discuss. (2014) 363-379
- [S6] S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci. (2014) 609-616.
- [S7] X. Li, G. Q. Han, Y.R. Liu, B. Dong, W. H. Hu, X. Shang, C. G. Liu, NiSe@NiOOH coreshell hyacinth-like nanostructures on nickel foam synthesized by

in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS applied materials & interfaces, (2016) 20057-20066.

[S8] C. Shuai, Z. L. Mo, X. H. Niu, X. Yang, G. G. Liu, J. Wang, N. J. Liu, R. B. Guo, Hierarchical NiCo₂S₄ nanosheets grown on graphene to catalyze the oxygen evolution reaction. Journal of Materials Science, 55(4), 1627-1636.

[S9] X. Li, G. Q. Han, Y. R. Liu, B. Dong, X. Shang, W. H. Hu, C. G. Liu, In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, (2016) 77-84.

[S10] Y. Li, P. Hasin, Y. Wu, NixCo_{3-x}O₄ nanowire arrays for electrocatalytic oxygen evolution. Advanced materials, (2010) 1926-1929.

[S11] L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou,
J. Am. Chem. Soc., (2015) 14023-14026.

[S12] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed, 2015, 54, 9351-9355.

[S13] B. Yu, X. Wang, F. Qi, B. Zheng, J. He, J. Lin, Y. Chen, Self-assembled coral-like hierarchical architecture constructed by NiSe₂ nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Applied Materials & Interfaces, 9(8) (2017) 7154-7159.

[S14] W. Li, B. Yu, Y. Hu, X. Wang, D. Yang, Y. Chen, Core–Shell Structure of NiSe₂ Nanoparticles@ Nitrogen-Doped Graphene for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. ACS Sustainable Chemistry & Engineering, 7(4) (2019) 4351-4359.

[S15] C. Shuai, Z. Mo, X. Niu, P. Zhao, Q. Dong, Y. Chen, R. Guo, Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Journal of Alloys and Compounds, 847 (2020) 156514.

[S16] W. Hou, B. Zheng, F. Qi, J. He, W. Zhang, Y. Chen, Graphene wrapped self-assembled Ni_{0.85}Se-SnO₂ microspheres as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 283 (2018) 1146-1153.

[S17] J. Li, Z. Yang, Y. Lin, J. Wang, F. Jiao, Y. Gong, Self-supported molybdenum doping Ni₃S₂ nanoneedles as efficient bifunctional catalysts for overall water splitting. New Journal of Chemistry, 20 (2020) 8578-8586.

[S18] Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Nickel Nanoparticles Encapsulated in Few - Layer Nitrogen - Doped Graphene Derived from Metal—Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 11 (2017) 1605957.

[S19] C. L. Xiao, Y. B. Li, X. Y. Lu, C. Zhao, Bifunctional porous NiFe/NiCo₂O₄/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Advanced Functional Materials, 20 (2016) 3515-3523.