Supplementary Information

p-type Cu₂O as an effective interlayer between CdS photocatalyst and NiO_x cocatalyst to promote photocatalytic hydrogen production

Xue Qiao^a, Chengsi Pan^a, Yuming Dong^{a,*}, Guangli Wang^a, Huizhen Zhang^a, Yan

Leng^a, Pingbo Zhang^a, Pingping Jiang^a and Yongfa Zhu^{b, a}

- ^a International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R.China
 - ^b Department of Chemistry, Tsinghua University, Beijing, 100084, P.R.China *Corresponding author: Email addresses: <u>dongym@jiangnan.edu.cn</u>

	Cu(CH ₃ CO O) ₂	TEOA (98%)	PEG40 0	Ligh t	Illuminatio n time	$H_2(mmol g^{-1} h ^{-1})$
CdS	50 μL	10 ml	1 g		1 h	67.02
CdS	100 µl	10 ml	1 g		1 h	99.94
CdS	150 μL	10 ml	1 g	\checkmark	1 h	85.34
CdS	200 µl	10 ml	1 g	\checkmark	1 h	65.51

 Table S1 Different amount of load on CdS for first step comparison

Table S2 Hydrogen production contrast with or without sacrificial agent.

	Cu (CH3COO)2	Ni (CH3COO)2	TEOA (98%)	PEG40 0	Ligh t	Illuminatio n time	HER (mmol g ⁻¹ h ⁻ ¹)
1		\checkmark				1h	46.07
2	\checkmark	\checkmark	\checkmark		\checkmark	1h	154.27

Fig.S1 Outdoor equipment of sunlight-driven water splitting by $NiO_x/Cu_2O/CdS$ composite.

Fig.S2 XRD patterns of $NiO_x/Cu_2O/CdS$ and CdS.

Fig.S3 Mott-Schottky plots of CdS.

Fig.S4 plots of $(\alpha hv)^2$ vs hv of CdS.

Fig.S5 Photoluminescence spectra of CdS, NiO_x/CdS and NiO_x/Cu₂O/CdS.

Fig.S6 Transient luminescence spectrum of CdS, NiO_x/CdS and NiO_x/Cu₂O/CdS.

Fig.S7 Photocurrrent of CdS, NiO_x/CdS and NiO_x/Cu₂O/CdS.

Fig.S8 Amount of hydrogen of NiO_x/Cu₂O/CdS by sunlight-driven.