Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPLEMENTARY MATERIAL

Emissive complexes of $\{Mo_6I_8\}^{4+}$ with triazolates: [2+3] cycloaddition of alkynes to $[Mo_6I_8(N_3)_6]^{2-}$

Alina D. Mironova,^a Maksim A. Mikhailov,^a Konstantin A. Brylev,^{a,b} Artem L. Gushchin,^{a,b} Taisiya S. Sukhikh,^{a,b} Maxim N. Sokolov^{*a,b}

Fig. S1. ESI-MS(-) spectrum of 2.

NMR spectrum of 2:

¹**H NMR** (500 MHz, CDCl₃) δ 0.87 (t, 24H, J = 7.35 Hz, CH₃), 1.30 (sext., 16H, J = 7.35 Hz, C<u>H</u>₂CH₃), 1.59 (m, 16H, C<u>H</u>₂CH₂N), 3.13 (m, 16H, N-C<u>H</u>₂), 3.82 (s, 44H, COOC<u>H</u>₃). ¹³**C NMR** (126 MHz, CDCl₃) δ 13.69 (TBA-CH₃), 19.88 (TBA -<u>C</u>H₂-CH₃), 24.06 (TBA - <u>C</u>H₂CH₂N), 51.89 (COO<u>C</u>H₃), 59.27 (TBA -CH₂N), 140.34 (Tzl), 163.17 (C=O).

Traces of CH₃OOC-C=C-COOCH₃ appear in ¹H NMR (500 MHz, CDCl₃) δ 3.82 (s, COOC<u>H</u>₃). In ¹³C NMR (126 MHz, CDCl₃) δ 53.49 (COO<u>C</u>H₃), 74.78 (C=C), 140.34 (Tzl), 152.25 (C=O).

Fig S3 ${}^{1}H$, ${}^{13}C$ –HMBC (black) and ${}^{1}H$, ${}^{13}C$ –HSQC (red) of **2**.

Fig S5 ¹³C NMR of **3** between 90 – 180 ppm

Fig. S6 Normalized emission spectra of **1** and **2** in the solid state.

Fig. S7 Emission decay profiles of **2** aerated (a) and deaerated (b) CH_3CN solutions as well as in the solid state (c)

Table S1, S2. Main bond distances and bond angles in the structure of $[Mo_6I_8(N_3C_2(COOCH_3)_2)_6]^{2-}$ found in **2**

	1	
11	Mo1	2.7625(6)
11	Mo2	2.7590(6)
11	Mo3	2.7748(6)
12	Mo1	2.7750(6)
12	Mo2	2.7815(6)
12	Mo3	2.7679(6)
13	Mo1	2.7706(6)
13	Mo2	2.7666(6)
13	Mo3	2.7588(6)
14	Mo1	2.7642(6)
14	Mo2	2.7653(6)
14	Mo3	2.7668(6)
Mo1	Mo2	2.6778(6)
Mo1	Mo2	2.6794(6)
Mo1	Mo3	2.6793(6)
Mo1	Mo3	2.6793(6)

Mo1	N11	2.220(4)
Mo2	Mo3	2.6721(7)
Mo2	Mo3	2.6731(6)
Mo2	N21	2.183(5)
Mo3	N31	2.193(4)
011	C13	1.178(9)
012	C13	1.273(9)
012	C14	1.457(10)
013	C15	1.181(8)
014	C15	1.302(9)
014	C16	1.445(9)
031	C33	1.185(9)
032	C33	1.327(9)
032	C34	1.456(9)
033	C35	1.197(8)
O34	C35	1.311(7)
034	C36	1.456(8)
N11	N12	1.324(6)
N11	N13	1.348(6)
N12	C11	1.345(7)
N13	C12	1.338(7)
N21	N22	1.345(7)
N21	N23	1.332(7)
N22	C21	1.355(8)
N23	C22	1.344(8)
N31	N32	1.342(6)
N31	N33	1.330(6)
N32	C31	1.344(7)
N33	C32	1.348(7)
C11	C12	1.377(8)
C11	C13	1.464(10)
C12	C15	1.474(9)
C21	C22	1.412(10)
C21	C23A	1.474(12)
C21	C23B	1.437(18)
C22	C25A	1.481(12)
C22	C25B	1.504(18)
C31	C32	1.391(8)
C31	C33	1.490(9)
C32	C35	1.489(8)
021A	C23A	1.179(16)
022A	C23A	1.289(17)
022A	C24A	1.436(13)
023A	C25A	1.183(13)
024A	C25A	1.263(12)
024A	C26A	1.462(11)

O21B	C23B	1.16(2)
O22B	C23B	1.28(2)
O22B	C24B	1.46(2)
O23B	C25B	1.21(2)
O24B	C25B	1.30(2)
O24B	C26B	1.456(18)
N1	C41	1.525(9)
N1	C51	1.523(9)
N1	C61	1.525(9)
N1	C71	1.509(9)
C41	C42	1.495(10)
C42	C43	1.519(10)
C43	C44	1.504(11)
C51	C52	1.505(11)
C52	C53	1.504(12)
C53	C54	1.474(12)
C61	C62	1.499(11)
C62	C63A	1.554(16)
C62	C63B	1.574(17)
C71	C72A	1.543(14)
C71	С72В	1.507(17)
C63A	C64A	1.465(18)
C72A	C73A	1.542(15)
C73A	C74A	1.458(15)
C63B	C64B	1.464(18)
C72B	C73B	1.568(18)
C73B	C74B	1.498(18)

Table S2 bond angles

Mo1	11	Mo3	57.877(14)
Mo2	11	Mo1	58.059(15)
Mo2	11	Mo3	57.769(14)
Mo1	12	Mo2	57.622(15)
Mo3	12	Mo1	57.811(16)
Mo3	12	Mo2	57.592(15)
Mo2	13	Mo1	57.843(15)
Mo3	13	Mo1	57.965(15)
Mo3	13	Mo2	57.842(15)
Mo1	14	Mo2	57.967(15)
Mo1	14	Mo3	57.948(15)
Mo2	14	Mo3	57.764(15)
11	Mo1	12	177.396(19)
11	Mo1	13	90.152(18)
11	Mo1	14	89.569(18)
13	Mo1	12	90.466(18)

14	Mo1	12	89.715(18)
14	Mo1	13	177.779(19)
Mo2	Mo1	11	60.905(17)
Mo2	Mo1	11	121.130(19)
Mo2	Mo1	12	61.310(15)
Mo2	Mo1	12	120.77(2)
Mo2	Mo1	13	61.001(16)
Mo2	Mo1	13	120.636(19)
Mo2	Mo1	14	61.037(15)
Mo2	Mo1	14	120.938(19)
Mo2	Mo1	Mo2	89.715(18)
Mo2	Mo1	Mo3	59.840(17)
Mo2	Mo1	Mo3	59.846(16)
Mo2	Mo1	Mo3	59.866(16)
Mo3	Mo1	11	120.716(19)
Mo3	Mo1	11	61.292(16)
Mo3	Mo1	12	121.15(2)
Mo3	Mo1	12	60.961(16)
Mo3	Mo1	13	120.86(2)
Mo3	Mo1	13	60.795(16)
Mo3	Mo1	14	61.076(16)
Mo3	Mo1	14	120.878(19)
Mo3	Mo1	Mo2	59.821(16)
Mo3	Mo1	Mo3	89.743(18)
N11	Mo1	11	88.45(12)
N11	Mo1	12	89.04(12)
N11	Mo1	13	88.14(12)
N11	Mo1	14	89.65(12)
N11	Mo1	Mo2	135.52(12)
N11	Mo1	Mo2	134.75(12)
N11	Mo1	Mo3	135.96(12)
N11	Mo1	Mo3	134.30(12)
11	Mo2	12	90.047(17)
11	Mo2	13	177.07(2)
11	Mo2	14	89.619(16)
13	Mo2	12	90.415(17)
14	Mo2	12	177.33(2)
14	Mo2	13	89.786(17)
Mo1	Mo2	11	61.036(15)
Mo1	Mo2	11	121.499(19)
Mo1	Mo2	12	121.01(2)
Mo1	Mo2	12	61.067(16)
Mo1	Mo2	13	61.155(15)
Mo1	Mo2	13	121.01(2)
Mo1	Mo2	14	121.25(2)
Mo1	Mo2	14	60.996(16)

Mo1	Mo2	Mo1	90.286(18)
Mo3	Mo2	11	61.412(16)
Mo3	Mo2	11	121.114(19)
Mo3	Mo2	12	121.17(2)
Mo3	Mo2	12	60.947(16)
Mo3	Mo2	13	60.933(16)
Mo3	Mo2	13	121.25(2)
Mo3	Mo2	14	61.147(16)
Mo3	Mo2	14	121.07(2)
Mo3	Mo2	Mo1	60.093(17)
Mo3	Mo2	Mo1	60.089(17)
Mo3	Mo2	Mo1	60.107(16)
Mo3	Mo2	Mo1	60.077(16)
Mo3	Mo2	Mo3	90.030(19)
N21	Mo2	11	89.29(14)
N21	Mo2	12	87.26(14)
N21	Mo2	13	87.84(14)
N21	Mo2	14	90.09(14)
N21	Mo2	Mo1	136.48(14)
N21	Mo2	Mo1	133.23(14)
N21	Mo2	Mo3	134.53(15)
N21	Mo2	Mo3	135.39(15)
12	Mo3	11	90.002(17)
13	Mo3	11	90.143(17)
13	Mo3	12	176.746(19)
13	Mo3	14	89.915(17)
14	Mo3	11	177.668(19)
14	Mo3	12	89.808(17)
Mo1	Mo3	11	60.833(16)
Mo1	Mo3	11	120.853(19)
Mo1	Mo3	12	61.228(15)
Mo1	Mo3	12	121.53(2)
Mo1	Mo3	13	121.30(2)
Mo1	Mo3	13	61.239(16)
Mo1	Mo3	14	60.977(15)
Mo1	Mo3	14	121.14(2)
Mo1	Mo3	Mo1	90.256(18)
Mo2	Mo3	11	120.884(19)
Mo2	Mo3	11	60.820(16)
Mo2	Mo3	12	121.31(2)
Mo2	Mo3	12	61.459(16)
Mo2	Mo3	13	121.312(19)
Mo2	Mo3	13	61.225(17)
Mo2	Mo3	14	61.089(15)
Mo2	Mo3	14	121.011(19)
Mo2	Mo3	Mo1	60.053(17)

Mo2	Mo3	Mo1	60.078(17)
Mo2	Mo3	Mo1	60.090(16)
Mo2	Mo3	Mo1	60.039(17)
Mo2	Mo3	Mo2	89.970(19)
N31	Mo3	11	88.71(12)
N31	Mo3	12	88.03(12)
N31	Mo3	13	88.72(12)
N31	Mo3	14	88.96(12)
N31	Mo3	Mo1	134.89(12)
N31	Mo3	Mo1	134.85(12)
N31	Mo3	Mo2	135.38(13)
N31	Mo3	Mo2	134.65(13)
C13	012	C14	116.5(7)
C15	014	C16	119.3(7)
C33	032	C34	118.2(8)
C35	034	C36	113.8(6)
N12	N11	Mo1	125.2(3)
N12	N11	N13	112.4(4)
N13	N11	Mo1	122.3(3)
N11	N12	C11	105.7(5)
C12	N13	N11	105.2(5)
N22	N21	Mo2	123.8(4)
N23	N21	Mo2	122.9(4)
N23	N21	N22	111.7(5)
N21	N22	C21	107.1(6)
N21	N23	C22	106.4(6)
N32	N31	Mo3	124.3(4)
N33	N31	Mo3	123.3(3)
N33	N31	N32	112.3(4)
N31	N32	C31	105.6(5)
N31	N33	C32	106.2(5)
N12	C11	C12	108.2(5)
N12	C11	C13	122.6(7)
C12	C11	C13	128.9(6)
N13	C12	C11	108.4(5)
N13	C12	C15	119.2(6)
C11	C12	C15	132.4(6)
011	C13	012	121.7(8)
011	C13	C11	124.2(8)
012	C13	C11	114.0(7)
013	C15	014	122.6(8)
013	C15	C12	124.2(8)
014	C15	C12	113.1(6)
N22	C21	C22	106.0(6)
N22	C21	C23A	123.2(9)
N22	C21	C23B	121.7(14)

C22	C21	C23A	130.3(9)
C22	C21	C23B	131.8(14)
N23	C22	C21	108.6(6)
N23	C22	C25A	122.2(10)
N23	C22	C25B	115(2)
C21	C22	C25A	129.0(10)
C21	C22	C25B	136(2)
N32	C31	C32	108.3(5)
N32	C31	C33	119.6(6)
C32	C31	C33	132.0(6)
N33	C32	C31	107.6(5)
N33	C32	C35	117.8(5)
C31	C32	C35	134.7(5)
031	C33	032	124.8(8)
031	C33	C31	125.3(8)
032	C33	C31	109.8(7)
033	C35	O34	124.7(6)
033	C35	C32	123.8(6)
034	C35	C32	111.6(6)
C23A	022A	C24A	116.5(12)
C25A	024A	C26A	116.7(10)
021A	C23A	C21	121.8(15)
021A	C23A	022A	123.1(12)
022A	C23A	C21	115.0(12)
023A	C25A	C22	126.4(11)
O23A	C25A	O24A	119.0(12)
024A	C25A	C22	113.7(10)
C23B	O22B	C24B	113(2)
C25B	O24B	C26B	127(3)
O21B	C23B	C21	124(3)
O21B	C23B	O22B	125(2)
O22B	C23B	C21	111(2)
O23B	C25B	C22	116(3)
O23B	C25B	O24B	114(3)
O24B	C25B	C22	115(3)
C41	N1	C61	111.0(6)
C51	N1	C41	108.3(6)
C51	N1	C61	108.8(6)
C71	N1	C41	109.3(6)
C71	N1	C51	110.5(6)
C71	N1	C61	109.0(6)
C42	C41	N1	116.6(6)
C41	C42	C43	110.7(7)
C44	C43	C42	113.0(7)
C52	C51	N1	117.5(7)
C53	C52	C51	111.9(8)

C54	C53	C52	115.2(10)
C62	C61	N1	116.8(7)
C61	C62	C63A	119.6(13)
C61	C62	C63B	112.0(14)
N1	C71	C72A	119.0(9)
C72B	C71	N1	111.8(11)
C64A	C63A	C62	98.7(18)
C73A	C72A	C71	113.9(13)
C74A	C73A	C72A	116.2(15)
C64B	C63B	C62	108.0(19)
C71	C72B	С73В	89.7(15)
C74B	C73B	C72B	110(2)