Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## **Supporting Information for**

## Interlayer engineering of MoS<sub>2</sub> nanosheets for high-rate

## potassium-ion storage

Wei Kang<sup>1</sup>, Yuchen Wang<sup>1</sup>, and Cuihua An<sup>1,2\*</sup>

<sup>1.</sup>Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Material & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
<sup>2.</sup>Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P.R. China
\*Corresponding Author E-mail Address [ancuihua@tjut.edu.cn]

$$i = av^b$$
 1

Where i is the peak current, v is the scan rate, and a and b are the parameters. The value of b is calculated from the log(i) - log(v) curve to determine the electrochemical behavior. b = 1 represents the pseudocapacitance control process, b = 0.5 represents the diffusion control process.

$$i(v) = k_1 v + k_2 v^{1/2}$$
 2

Where i is the peak current and v is the scan rate.  $k_1v$  and  $k_2v^{1/2}$  represent the capacitive control process and diffusion control process. To obtain the values of the parameters  $k_1$  and  $k_2$ , we draw  $i'v^{1/2}$  and  $v^{1/2}$ , where  $k_1$  and  $k_2$  can be determined by the slope on the straight line and the y-axis intercept point.

$$D = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_t}\right)^2$$

3

Where  $\tau$  is the relaxation time;  ${}^{m_B}$  is the mass of the electrode active material;  ${}^{V_M}$  is the molar volume of the electrode material;  ${}^{M_B}$ the molar mass of the electrode active material;  ${}^{S}$  is the area of the electrode;  ${}^{\Delta E_S}$  is the voltage change due to the pulse;  ${}^{\Delta E_t}$  is the constant current charge (discharge) voltage variation of the electricity.



Fig. S1 XRD patterns for all the samples.



Fig. S2 XRD patterns for  $MoS_2$  and Se- $MoS_2$ -2.



Fig. S3 Raman spectrum for  $MoS_2$  and  $Se-MoS_2$ -2.



Fig. S4 (a-c) SEM for MoS<sub>2</sub>; (d-e) SEM for Se-MoS<sub>2</sub>-2.



Fig. S5 (a) SEM for Se-MoS $_2$ -1; (b) SEM for Se-MoS $_2$ -3; (c) SEM for Se-MoS $_2$ -4.



Fig. S6 (a,b) TEM images; (c,d) HRTEM images; (e) SAED pattern; (f-h) HAAADF-STEM and elemental mapping images for  $MoS_2$ .



Fig. S7 (a) Energy spectrum for  $MoS_2$ ; (b) Energy spectrum for Se- $MoS_2$ -2.



Fig. S8 Charge/discharge curves at 50 to 2000 mA  $g^{-1}$  (a) for MoS<sub>2</sub>; (b) for Se-MoS<sub>2</sub>-1; (c) for Se-MoS<sub>2</sub>-3; (d) for Se-MoS<sub>2</sub>-4.



Fig. S9 XRD patterns of  $\mathsf{MoS}_2$  and  $\mathsf{MoS}_2$  after cycling.



Fig. S10 HRTEM images for  $MoS_2$  after cycling.



Fig. S11 The Nyquist plots for  $MoS_2$  and Se- $MoS_2$ -2 after 1000 cycles.



Fig. S12 CV curves of  $MoS_2$  and Se- $MoS_2$ -2 at 0.2 mV s<sup>-1</sup>.



Fig. S13 (a) CV curves of  $MoS_2$  at scan rates from 0.2 to 4 mV s<sup>-1</sup>; (b) the relationship peak current and scan rates; (c) the total and capacitive current responses at a 1 mV s<sup>-1</sup> are the area enclosed by black lines and the shaded region;(d) The percentages of capacitive contributions at different scan rates.

| Anode materials                       | Current density:<br>mA g <sup>-1</sup> | Capacity:<br>mAh g <sup>-1</sup> | Reference |
|---------------------------------------|----------------------------------------|----------------------------------|-----------|
| Se-MoS <sub>2</sub>                   | From 50 to 2000                        | From 642 to 212                  | This work |
| $Fe_9S_{10}@MoS_2@C$                  | From 500 to 2000                       | Form 288 to 205                  | 1         |
| MoS <sub>2</sub> /N-doped-C           | From 100 to 2000                       | From 258 to 131                  | 2         |
| MoSe <sub>2</sub> /N-C                | From 100 to 2000                       | From 300 to 178                  | 3         |
| MoO <sub>2</sub> /rGO                 | From 50 to 500                         | From 281.8 to<br>176.4           | 4         |
| MoS₂@rGO                              | From 100 to 2000                       | From 364.8 to<br>196.8           | 5         |
| MoS <sub>2</sub> @SnO <sub>2</sub> @C | From 50 to 2000                        | From 595 to 168                  | 6         |
| $EF-Ta_2NiSe_5$                       | From 50 to 2000                        | From 308 to 62                   | 7         |

Table S1 Comparison of the potassium storage performance of Se-MoS<sub>2</sub>-2 in this work with the rate performance of previously reported materials

## Reference

- 1. C. Zhang, F. Han, F. Wang, Q. Liu, D. Zhou, F. Zhang, S. Xu, C. Fan, X. Li and J. Liu, *Energy Storage Mater.*, 2020, **24**, 208-219.
- 2. B. Jia, Q. Yu, Y. Zhao, M. Qin, W. Wang, Z. Liu, C.-Y. Lao, Y. Liu, Z. Zhang and X. Qu, *Adv. Funct. Mater.*, 2018, **28**, 1803409.
- 3. J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu, E. Zhang, Q. Liu, X. Yu and B. Lu, *Adv. Energy Mater.*, 2018, **8**, 1801477.
- 4. C. Liu, S. Luo, H. Huang, Y. Zhai and Z. Wang, *ChemSusChem*, 2019, **12**, 873-880.
- 5. S. Chong, L. Sun, C. Shu, S. Guo, Y. Liu, W. A. Wang and H. K. Liu, *Nano Energy*, 2019, **63**, UNSP 103868.
- 6. Z. Chen, D. Yin and M. Zhang, *Small* 2018, **14**, 1703818.
- H. Tian, X. Yu, H. Shao, L. Dong, Y. Chen, X. Fang, C. Wang, W. Han and G. Wang, *Adv. Energy Mater.*, 2019, 9, 1901560.