Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Synthesis of nanoparticles of zeolitic imidazolate framework ZIF-94 using inorganic deprotonators

Dharmjeet Madhav^{1,2}, Magdalena Malankowska^{1,2,*}, Joaquín Coronas^{1,2,*}

¹Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.

²Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain.

* Corresponding authors' email: magnal@unizar.es, coronas@unizar.es

Fig. S1. Experimental scheme of the modified original method of ZIF-94 synthesis.

Fig. S2. TEM images of product A4.

Fig. S3. TEM images of product B.

Miller indices calculation

The interplanar distance d, in the set of (*hkl*) of the materials having cubic unit cell with lattice parameter a is obtained from the equation

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Combining the above equation with Bragg's law ($\lambda = 2d\sin\theta$), gives

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} = \frac{4\sin^2\theta}{\lambda^2}$$

Rearranging gives

$$\sin^2 \theta = (\frac{\lambda^2}{4a^2}) (h^2 + k^2 + l^2)$$

 λ^2

Where, $\overline{4a^2}$ is a constant and $\sin^2 \theta$ is proportional to the value of $h^2 + k^2 + l^2$, which can take only integral values except few such as 7, 15 for which the combination of *hkl* is not possible. Taking all these into consideration observed value of $\sin^2 \theta$ satisfies the *hkl* values for body cantered cubic structure.

Peak position (2theta, °)	sin²θ	$\frac{\sin^2\!\theta}{\sin^2\!\theta_{min}}$	$\frac{\sin^2\theta}{\sin^2\theta_{min}} \times 2$	$h^2 + k^2 + l^2$	hkl
7.49607	0.00427	1	2	2	110
10.59482	0.00852	1.99	3.99	4	200
12.9714	0.01276	2.99	5.97	6	211
14.98033	0.01699	3.98	7.95	8	220
16.73979	0.02119	4.96	9.92	10	310
18.36299	0.02546	5.96	11.9	12	222
19.85083	0.02971	6.95	13.9	14	321
21.24348	0.03398	7.95	15.9	16	400
23.77762	0.04244	9.93	19.9	20	420

Table S1. Miller indices calculation from observed value of $\sin^2 \theta$

27.08645	0.05484	12.8	25.7	26	431

Particle size calculation through Scherrer equation

Table S2. The particle size and average particle size of all the samples calculated using Scherrer equation, at the
values of 2-theta for different peaks and K equals to 0.94

	Peak position	FWHM	Crystal Size (nm)	Average Size
	(2theta)		(Kλ/β cos θ)	(nm)
Original Method	7.48	0.23	36.29	
	10.56	0.28	29.75	
	12.95	0.25	32.83	31 <u>+</u> 4
	14.97	0.26	31.82	
	16.73	0.33	25.71	
	7.47	0.25	32.60	
	10.53	0.28	30.19	
Product A.1	12.91	0.27	31.24	31 <u>+</u> 1
	14.92	0.28	29.94	
	16.68	0.29	29.85	
	7.47	0.28	29.85	
	10.53	0.30	28.04	
Product A.2	12.91	0.29	29.21	29 <u>+</u> 1
	14.92	0.29	29.18	
	18.30	0.29	29.13	
	7.51	0.25	33.20	
	10.58	0.26	31.58	
Product A.3	12.96	0.25	33.33	33 <u>+</u> 1
	14.96	0.25	33.33	
	18.33	0.25	33.90	
	7.46	0.22	38.26	
	12.92	0.21	38.80	
Product A.4	14.93	0.21	39.76	38 <u>+</u> 2
	18.31	0.21	39.65	
	19.78	0.24	34.45	
	7.60	0.39	21.17	
	10.68	0.49	16.94	
Product B	13.07	0.52	15.98	16 <u>+</u> 3
	15.09	0.56	15.04	
	19.91	0.73	11.53	

Fig. S4. XRD pattern and TGA curve of product A.1 activated at 200 °C for 8 h compared with that of non-activated product A.1

Sample	Pore Volume (cm³/g)
Original Method	0.23
Product A.1	0.09
Product A.2	0.16
Product A.3	0.19
Product A.4	0.16
Product B	0.16

Table S3. Pore volume of all the samples calculated using N_2 adsorption data