Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Excellent Photoreduction Performance of Cr(VI) over (WO₄)²⁻ Doped Metal Organic Framework Materials

Xinyun Zhao1*, Lamei Wu1, Xi Chen1, Juncheng Hu1, Tsung-hsueh Wu2, Qin Li1,

Kangle Lv¹

¹ Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and

Materials Science, South-Central University for Nationalities, Wuhan 430074, China

²Department of Chemistry, University of Wisconsin-Platteville, Platteville, 53818, USA

1. Fig.S1: Enlarged power XRD patterns of different samples with 2θ from 5° to 10°

- 2. Fig.S2: XPS patterns of C1s within 0.4Na₂WO₄ BiBDC
- 3. Fig.S3a-3e: Raman spectra of as-prepared samples
- 4. Fig.S4a-4e: FT-IR spectra of as-prepared samples
- 5. Fig.S5: DRS of as-samples
- 6. Fig.S6. SEM images of as-prepared samples
- 7. Fig.S7. Recycling and stability of catalyst

Fig.S1: Enlarged power XRD patterns of different samples with 2 θ from 5 to 10 $^{\circ}$

Fig.S2: XPS patterns of C1s within 0.4Na₂WO₄ BiBDC

Fig.S3a. Raman spectra of BiBDC

Bismuth terephthalate shows characteristic Raman vibrational peaks at 1609(s), 1505 (w), 1409(s), 1133(w), 859(s), 632(w) and 309(s) cm⁻¹. The bands at 3073 cm⁻¹ and 1609 cm⁻¹ are ascribed to $v_{(C-H)}$ and $v_{(C=C)}$ modes of the benzene ring. While the peaks at 1505 and 1409 cm⁻¹ are ascribed to the asymmetric and symmetric stretch modes of the coordinated -COO⁻ groups. The peak at 1133 cm⁻¹ is attributed to terephthalate ring breathing and benzoate ring deformation. The peaks at 859 and 632 cm⁻¹ are associated with the deformation modes of C–H out of phase and benzene ring deformation in terephthalates. The peak at 309 cm⁻¹ of bismuth terephthalate is important to monitor as it can be attributed to the presence of vibrational modes involving Bi³⁺ species.

Fig.S3b. Raman spectra of 0.1Na₂WO₄BiBDC

Fig.S3c. Raman spectra of 0.3Na₂WO₄BiBDC

Fig.S3d. Raman spectra of 0.4Na₂WO₄BiBDC

Fig.S3e. Raman spectra of 0.5Na₂WO₄BiBDC

Fig.S5. DRS of as-prepared samples

Fig.S7. Recycling and stability of the catalyst. C/C₀ of Cr(VI) with irradiation time plot (a) and XRD patterns of 0.3Na₂WO₄BiBDC before and after using (b), XPS analysis of Cr after 4th recycling use over 0.3Na₂WO₄BiBDC (c)