Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Remarkable selectivity of the 2-arylquinoline-based acyl hydrazones toward copper salts: Exploration of their catalytic applications in the copper catalysed *N*-arylation of indole derivatives and C1-Alkynylation of Tetrahydroisoquinolines by A³ Reaction

Carlos A Echeverry-Gonzalez*^a, Marlyn Catalina Ortiz Villamizar,^a and Vladimir V. Kouznetsov*^a

^{a.} Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 vía refugio, Piedecuesta, A.A. 681011, Colombia.*E-mail: <u>kouznet@uis.edu.co</u>

Contenido

1.	Synt	hesis of AC ligands	. 3
	1.1.	General procedure	. 3
2.	Cata	alysis of Ullmann N-arylation of Heterocycles	. 6
	2.1.	General procedure:	. 6
3.	Cata	alysis of A ³ redox-neutral coupling reaction	. 8
	3.1.	General procedure:	. 8
4.	¹ H a	nd ¹³ C NMR spectra	12
	Fig S5.	^1H and ^{13}C NMR spectra (CDCl ₃) and MS characterization of the compound 3	12
	Fig S6.	^1H and ^{13}C NMR spectra (CDCl ₃) of the compound 4	13
	Fig S7.	^1H and ^{13}C NMR spectra (CDCl ₃) and MS characterization of the compound 5	14
	Fig S8.	^1H and ^{13}C NMR spectra (CDCl ₃) and MS characterization of the compound 6	15
	Fig S9.	^1H and ^{13}C NMR spectra (CDCl ₃) and MS characterization of the compound 7	16
	Fig S10). ¹ H and ¹³ C NMR spectra (CDCl ₃) and MS characterization of the compound 8	17
	Fig S11	. 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 9	18
	Fig S12	$^{2.}$ ¹ H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 10	19
	Fig S13	3 . ^{1}H and ^{13}C NMR spectra (CDCl_3) and MS characterization of the compound 11	20
	Fig S14	1 1 H and 13 C NMR spectra (CDCl_3) and MS characterization of the compound 12	21
	Fig S15	1 ¹ H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 16a	22
	Fig S16	5. 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 19a	23
	Fig S17	$^{\prime}$. ^{1}H and ^{13}C NMR spectra (CDCl_3) and MS characterization of the compound 20a	24
	Fig S18	3 ^{1}H and ^{13}C NMR spectra (CDCl_3) of the compound 21a	25
	Fig S19). 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 22a	26
	Fig S20). ¹ H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 23a	27
	Fig S21	. 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 24a	28
	Fig S22	1 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 25b	29
	Fig S23	1 H and 13 C NMR spectra (CDCl_3) and MS characterization of the compound 26a	30
	Fig S24	$^{\rm 1}$ H and $^{\rm 13}$ C NMR spectra (CDCl ₃) of the compound 27a	31
	Fig S25	i. 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 28a	32
	Fig S26	5. 1 H and 13 C NMR spectra (CDCl ₃) and MS characterization of the compound 29a	33
	Fig S27	'. ¹ H and ¹³ C NMR spectra (CDCl ₃) and MS characterization of the compound 30a	34
5.	REFI	ERENCES	35

1. Synthesis of AC ligands

Scheme S1. Synthetic Pathway of the novel chelating ligand: a. KOH 33% (ac), EtOH, 78 °C; b. SOCl₂, MeOH, 65 °C; c. NH₂NH₂·H₂O, MeOH, MW (170 °C, 14 bar, normal power), 20 min; and d. EtOH, trifluoracetic acid (TFA), 78 °C. Ligand L4 and L5 were synthesised as previously described by Xu and Dijken, respectively.^{1,2}

1.1. General procedure

Experimental section

General. All reagents and solvents were used as purchased. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin layer chromatography (TLC) was performed using aluminum coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a Bruker Avance 400 (¹H: 400 MHz; ¹³C: 100 MHz) spectrometer at 298 K using partially deuterated solvents as internal standards. Coupling constants (*J*) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. UV-Vis spectra were recorded on a Genesys 10s spectrophotometer using dimethylsulfoxide (DMSO) as solvent. Emission spectra were recorded on a Photon Technology International spectrophotometer using DMSO as solvents. MALDI experiments were carried out in a Bruker ultrafleXtreme MALDI TOF-TOF instrument (Bruker Daltonics, Billerica, MA) equipped with a 1 kHz Smart Beam Nd:YAG laser (355 nm), 6 ns pulse and spot size of 100 μ m -according to the manufacturer's specifications-, using the FlexAnalysis software.

Step a, b and c: As shown in Scheme S1, isatine (1) (2.0 mmol) and acetophenone (2a) (3.6 mmol) were dissolved in ethanol (8 mL). Then, aqueous solution of KOH 33% (28.6 mmol) was added, and the mixture was stirred and refluxed for 12 h. The ethanol was evaporated under reduced pressure and the crude was neutralized with HCl (pH ~5.0) and filtered. The filtered solid (1.33 mmol), without further purification, was dissolved in Methanol (10 mL) and cooled at 0 °C. Then, SOCl₂ (1.99 mmol) was added, and the solution was stirred and refluxed for 16 h. The methanol was evaporated under reduced pressure and the crude was neutralized with NaHCO₃, the product was extracted using AcOEt without further purification. The ester derivative (1.04 mmol) and hydrazinium hydroxide (6.24 mmol) was stirred and refluxed in ethanol (5 mL) for 4 h. Then, the solution was cooled, and the precipitate was filtered.

Each product was characterized as described previously.¹

Step d:

Considering the *configurational dynamic* of acylhydrazones (ACs), likewise, although isomer *E* is generally obtained, hydrazides with increased steric interaction led to the formation of significant yields of the *Z* form,³ we tried to standardized the reaction condition for obtaining only the isomer *E* (Table S1).

Entry ^a	Heating	Cat.	Solvent (mL)	т (°С)	Time (h)	E/Z ^e	Yield (%)	Global yield (%)
1	Conventional		EtOH (10 mL)	78	7	3:1	87	41
2 ^b	MW		EtOH (3 mL)	170	0.33	3:1	49	23
3°	Conventional	TFA	EtOH (10 mL)	78	0.16	3.3:1	90	43
4 ^d	grinding		H ₂ O/AcOH (3:3 drops)	r.t.	0.16	3.3:1	67	32

Table S1. Optimization of the step d in the synthesis of L1

^a All entries were performed using 2-phenylquinoline-4-carbohydrazine (**3a**) (0.2 mmol) and 2-pyridincarbaldehyde (**4a**) (0.4 mmol).; ^b MW conditions: (120 °C, 9-10 bar, low power).; ^c It was used five drops of trifluoroacetic acid (TFA).²; ^d the reaction was performed in an agate mortar as previously described.⁴; ^e *E/Z* ratio was determined by NMR ¹H.

L1: Beige solid (90%). Mp. 190-193 °C. ¹H NMR (400 MHz, CDCl₃) δ: 12.46 (s, 1H), 8.66 (dd, J = 4.8, 0.7 Hz, 1H), 8.42 (d, *J* = 2.4 Hz, 2H), 8.41 – 8.37 (m, 2H), 8.37 – 8.34 (m, 1H), 8.28 – 8.23 (m, 1H), 8.21 – 8.17 (m, 1H), 8.11 – 8.06 (m, 1H), 7.98 – 7.85 (m, 2H), 7.73 – 7.69 (m, 1H), 7.62 – 7.55 (m, 3H), 7.49 – 7.46 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 163.5, 156.3, 153.4, 150.1, 149.5, 148.4,

141.5, 138.5, 137.5, 130.9, 130.5, 130.2, 129.4, 128.0, 127.8, 127.7, 125.5, 125.3, 123.8, 120.6, 117.8.ppm. Calculated for C₂₂H₁₆N₄O m/z 352.1324; found: : [M-H] m/z 351.1239.

Figure S1. ¹H spectrum (CDCl₃) and MS characterization of L1

L2 was synthesised using the general procedure described for **L1**. Beige solid (88%). Mp. 220-223 °C. ¹H NMR (400 MHz, CDCl₃) δ: 12.52 (s, 1H), 9.00 (s, 1H), 8.67 – 8.56 (m, 16.8, 6.5 Hz, 3H), 8.45 (d, *J* = 9.7 Hz, 1H), 8.26 – 8.21 (m, 2H), 8.12 (dd, *J* = 12.3, 8.1 Hz, 3H), 8.04 – 7.87 (m, 3H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.48 (t, *J* = 6.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 163.6, 156.1,

 $153.4, 150.1, 149.6, 148.5, 137.5, 135.8, 134.2, 133.6, 131.0, 130.2, 129.3, 129.0, 128.1, 128.1, 127.2, 125.6, 125.2, 125.0, 123.9, 120.7, 117.9 \ ppm. Calculated for C_{26}H_{18}N_4O \ m/z \ 402.1481; found: [M-H] \ m/z \ 401.1482.$

Figure S2. ¹H spectrum (CDCl₃) and MS characterization of L2

L3 was synthesised using the general procedure described for **L1.** Yellow solid (78%). Mp. 228-230 °C. ¹H NMR (400 MHz, CDCl₃) δ: 12.47 (s, 1H), 8.65 (d, *J* = 4.0 Hz, 1H), 8.50 (s, 1H), 8.40 (s, 1H), 8.20 – 8.16 (m, 2H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.97 – 7.93 (m, 1H), 7.89 – 7.85 (m, 1H), 7.71 – 7.66 (m, 3H), 7.47 (dd, *J* = 7.5, 5.0 Hz, 1H), 3.96 (s, 6H), 3.77 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 163.6,

156.0, 153.8, 153.4, 150.1, 149.6, 148.2, 141.7, 140.0, 137.5, 134.0, 130.8, 130.1, 127.8, 125.4, 125.2, 123.7, 120.6, 117.8, 105.5, 105.3, 60.7, 56.7 ppm. Calculated for C₂₅H₂₂N₄O₄ m/z 442.1641; found: [M-H] m/z m/z 441.1605.

Figure S3. ¹H spectrum (CDCl₃) and MS characterization of L3

2. Catalysis of Ullmann N-arylation of Heterocycles

2.1. General procedure:

Aryl halide (0.5 mmol), indole (0.7 mmol), K_2CO_3 (0.7 mmol), Cul (0.05 mmol), and ligand (0.05 mmol) were dissolved in 2 mL of DMSO and heated at 110 °C for 24 h. The cooled solution was partitioned between H₂O and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude was purified by SiO₂ using Dichloromethane/Petroleum ether (2/1).

3 was synthesised using the general procedure described above. White solid (99%). ¹H NMR (400 MHz, CDCl₃) δ: 7.76 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 12.0 Hz, 2H), 7.25 (d, *J* = 3.2 Hz, 1H), 7.21 – 7.12 (m, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.64 (dd, *J* = 3.2, 0.9 Hz, 1H),

3.84 (s, 3H) ppm. 13 C NMR (100 MHz, CDCl₃) δ : 158.3, 136.4, 132.9, 129.0, 128.3, 126.0, 122.2, 121.1, 120.1, 114.8, 110.43, 102.9, 55.6 ppm. Calculated for C₁₅H₁₃NO m/z 223.0997; found: m/z 223.2992.

4 was synthesised using the general procedure described above. White solid (93%). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.2, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.28 (m, 3H), 7.22 – 7.13 (m, 2H), 6.65 (dd, *J* = 3.2, 0.9 Hz, 1H), 2.42 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 137.3, 136.4, 136.0, 130.2, 130.2, 129.2, 128.1, 124.4, 122.2, 121.1, 110.5,

103.2, 21.1 ppm. Calculated for $C_{15}H_{13}N$ m/z 207.1048; found: m/z 207.1052.

5 was synthesised using the general procedure described above. Beige solid (99%). Mp. 145-147 °C. ¹H NMR (400 MHz, CDCl₃) δ: 8.30 (d, *J* = 8.0 Hz, 1H), 8.23 (d, *J* = 8.7 Hz, 1H), 8.20 – 8.17 (m, 2H), 7.95 – 7.89 (m, 3H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.67 (dd, *J* = 8.2, 1.0 Hz,

1H), 7.57 – 7.53 (m, 2H), 7.50 – 7.46 (m, 1H), 7.45 (d, J = 4.0 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.23 – 7.19 (m, 1H), 6.75 (dd, J = 3.2, 0.9 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 157.4, 146.7, 139.4, 137.6, 136.5, 136.0, 131.5, 129.5, 129.0, 128.0, 127.7, 127.6, 126.8, 122.7, 121.3, 121.0, 120.7, 119.9, 110.5, 104.3 ppm. Calculated for C₂₃H₁₆N₂ m/z 320.1313; found: m/z 320.1308.

6 was synthesised using the general procedure described above. Beige solid (69%). Mp. 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ: 10.09 (s, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.46 – 7.38 (m, 3H), 7.37 – 7.30 (m, 2H), 7.07 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 184.9, 159.5, 138.5, 138.0, 131.0, 126.4, 125.3, 124.5, 123.3, 122.2, 119.3, 115.1, 111.0, 55.7 ppm.

Calculated for $C_{16}H_{13}NO_2$ m/z 251.0946; found: m/z 251.0944.

7 was synthesised using the general procedure described above. Beige solid (99%). Mp. 141-143 °C. ¹H NMR (400 MHz, CDCl₃) δ: 10.15 (s, 1H), 8.44 – 8.40 (m, 1H), 8.36 (d, *J* = 8.9 Hz, 1H), 8.28 (d, *J* = 8.6 Hz, 1H), 8.21 (d, *J* = 7.0 Hz, 2H), 8.02 (s, 1H), 8.00 (d, *J* = 8.6 Hz, 1H), 7.96 (d, *J* = 2.4 Hz, 1H), 7.88 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.58 – 7.55 (m, 3H), 7.53 – 7.59 (m, 1H), 7.42 –

7.36 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃) δ : 185.0, 158.4, 147.4, 139.1, 138.1, 137.6, 136.7, 135.8, 132.0, 129.9, 129.0, 127.6, 127.5, 126.5, 125.7, 124.9, 123.7, 122.5, 122.4, 120.3, 120.1, 111.0 ppm. Calculated for C₂₄H₁₆N₂O m/z 348.1263; found: m/z 348.1259.

8 was synthesised using the general procedure described above. Beige solid (70%). ¹H NMR (400 MHz, CDCl₃) δ: 7.30 (d, *J* = 9.0 Hz, 2H), 6.99 (t, *J* = 2.2 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 6.32 (t, *J* = 2.2 Hz, 2H), 3.82 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 157.7, 134.5, 122.2, 119.7, 114.6, 109.9, 55.6 ppm. Calculated for C₁₁H₁₁NO m/z 173.0841; found: m/z 173.084.

9 was synthesised using the general procedure described above. Beige solid (98%). ¹H NMR (400 MHz, CDCl₃) δ: 8.13 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 9.0 Hz, 2H), 7.39 (t, *J* = 2.2 Hz, 2H), 7.33 – 7.31 (m, 2H), 7.28 – 7.24 (m, 2H), 7.10 (d, *J* = 9.0 Hz, 2H), 3.82 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 158.9, 141.4, 130.3, 128.6, 125.9, 123.1, 120.3, 119.7, 115.1, 109.7, 55.6 ppm. Calculated for

C₁₉H₁₅NO m/z 273.1154; found: m/z 273.1156

10 was synthesised using the general procedure described above. Beige solid (95%). ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (d, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.40 – 7.35 (m, 6H), 7.30 – 7.22 (m, 2H), 2.48 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 141.1, 137.4, 135.0, 130.5, 127.0, 125.9, 123.3, 120.3, 119.7, 109.8, 21.3 ppm. Calculated for C₁₉H₁₅N m/z 257.1204; found: m/z 257.1206

11 was synthesised using the general procedure described above. Beige solid (95%). Mp. 168-171 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.38 (d, *J* = 8.9 Hz, 1H), 8.27 – 8.14 (m, 5H), 7.99 (d, *J* = 2.3 Hz, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.91 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.52 – 7.44 (m, 3H), 7.44 – 7.40 (m, 2H), 7.33 – 7.29 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ :

157.9, 147.2, 140.9, 139.4, 136.6, 135.5, 131.7, 129.6, 129.0, 127.8, 127.6, 126.2, 124.7, 123.6, 120.5, 120.3, 119.8, 109.8 ppm. Calculated for C₂₇H₁₈N₂ m/z 370.1470; found: m/z 370.1465.

12 was synthesised in high yield using the general procedure for Buchwald reaction. Briefly, Aryl iodide (0.5 mmol), diphenylamine (0.7 mmol), *t*-BuOK (0.7 mmol), x-Phos-Pd-G2 (0.005 mmol) were dissolved in 1 mL of 1,4-dioxane and heated at 110 °C for 24 h. The cooled solution was partitioned between H₂O and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and

concentrated under reduced pressure. The crude was purified by SiO₂ using Dichlorometane/Petroleum ether (2/1). Yellow solid (96%). ¹H NMR (400 MHz, CDCl₃) δ : 8.15 – 8.10 (m, 2H), 8.02 (d, *J* = 9.1 Hz, 1H), 7.94 (dd, *J* = 8.7, 0.8 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.47 – 7.41 (m, 1H), 7.36 – 7.28 (m, 5H), 7.20 – 7.15 (m, 4H), 7.12 – 7.07 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 155.6, 147.5, 145.9, 135.5, 130.5, 129.5, 129.0, 128.8, 128.2, 127.4, 127.3, 124.8, 123.5, 119.3, 118.1 ppm. Calculated for C₂₇H₂₀N₂ m/z 372.1626; found: m/z 372.1622.

3. Catalysis of A³ redox-neutral coupling reaction

3.1. General procedure:

A crimper vial equipped with a magnetic stir bar was charged with 1,2,3,4-tetrahydroisoquinoline **13** (1.4 mmol), aldehyde (1.4 mmol) and alkyne (1 mmol), CuI (10 mol%), Ligand 1 (10 mol%) and 4 Å molecular sieves. The vial was sealed and was purged three times with argon and degassed toluene (0.2 M) was added. Then, the reaction mixture was heated over 24 hours at 100°C. After cooling to room temperature, the crude mixture was loaded directly onto celite; then, purified by column chromatography (silica gel) using hexane/ethyl acetate mixtures as the eluent.

Previous reports have shown the formation of the *endo-* and *exo-* isomers, however, when using ligand, it was observed in the ¹H NMR spectrum a complete isomerization of the *exo-* to *endo-* intermediate (Figure S4). This indicates a regioselectivity of the Cul **/L1** catalytic system and the determining role that ligands have on the activation of the catalytic system.

Figure S4. ¹H NMR spectrum of crude of reaction for compound 16a

16a: yellow liquid (100%). ¹H NMR (400 MHz, CDCl₃) δ: 7.69 (dd, *J*= 7.7, 1.5 Hz, 1H), 7.64 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.56–7.51 (m, 2H), 7.37 (m, 5H), 7.27–7.24 (m, 2H), 7.23–7.17 (m, 2H), 4.97 (s, 1H), 4.16 (d, *J* = 15.4 Hz, 1H), 4.10 (d, *J* = 15.4, 1H), 3.28–3.08 (m, 2H), 2.89-2.83 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 137.8, 135.5, 134.1, 132.9, 131.8 (2C), 130.7, 129.1, 128.5, 128.2, 128.1 (2C), 127.8, 127.3, 127.0, 125.9, 124.9, 123.2, 87.7, 86.8, 58.9, 54.7, 45.8,

29.2 ppm. ESI Calculated for C₂₄H₂₀BrN (M+H)⁺: 402.0852, Found: 402.0901.

19a: color-less oil (85%). ¹H NMR (400 MHz, CDCl₃) δ : 7.55–7.49 (m, 4H), 7.40 (t, *J* = 7.3 Hz, 3H), 7.37–7.30 (m, 4H), 7.24–7.18 (m, 3H), 4.86 (s, 1H), 4.03 (d, *J* = 13.3 Hz, 1H), 3.98 (d, *J* = 13.3 Hz, 1H), 3.21–3.02 (m, 2H), 2.94–2.78 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 138.3, 135.5, 134.1, 131.8 (2C), 129.3 (2C), 129.0, 128.3 (2C), 128.2 (2C), 128.0, 127.8, 127.2, 126.9, 125.8, 123.3, 87.5, 86.9, 59.6, 54.4, 45.8, 29.0 ppm. ESI Calculated for C₂₄H₂₁N (M+H)⁺: 324.1747, Found: 324.1756.

20a: yellow liquid (98%). ¹H NMR (400 MHz, CDCl₃) δ: 7.51–7.47 (m, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.35–7.28 (m, 4H), 7.22–7.15 (m, 3H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.81 (s, 1H), 3.93 (d, *J* = 12.9 Hz, 1H), 3.89 (d, *J* = 12.8 Hz, 1H), 3.85 (s, 3H), 3.17–3.01 (m, 2H), 2.91–2.80 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 158.8, 135.4, 134.1, 131.8 (2C), 130.5 (2C), 130.2, 129.0, 128.2 (2C), 128.0, 127.8, 126.9, 125.8, 123.2, 113.7 (2C), 87.5, 86.9, 58.9,

55.3, 54.1, 45.7, 29.0 ppm. ESI calculated for $C_{25}H_{23}NO$ (M+H)⁺: 354.1852, Found: 354.1907.

21a: yellow liquid (75%). ¹H NMR (400 MHz, CDCl₃) δ: 7.51–7.47 (m, 2H), 7.40–7.32 (m, 6H), 7.29–7.21 (m, 4H), 4.90 (s, 1H), 4.06 (d, *J* = 3.7 Hz, 2H), 3.20–3.03 (m, 2H), 2.89–2.82 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 133.3, 131.9 (C2), 131.5, 129.4, 129.1 (2C), 128.3 (2C), 128.2 (2C), 127.8, 127.6, 127.1, 127.1, 126.7, 126.0, 123.1, 87.5, 86.9, 55.9, 54.8, 45.9, 29.2 ppm. Full characterization can be consulted at the reference.⁵

22a: yellow oil (100%). ¹H NMR (400 MHz, CDCl₃) δ: 7.58 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.40 (dd, *J* = 4.0, 2.6 Hz, 4H), 7.37 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.31–7.27 (m, 2H), 7.25 (q, *J* = 5.6 Hz, 1H), 7.20 (d, *J* = 3.3 Hz, 1H), 7.10 (dd, *J* = 5.0, 3.5 Hz, 1H), 5.04 (s, 1H), 4.28 (q, *J* = 13.8 Hz, 2H), 3.26–3.11 (m, 2H), 3.06–2.89 (m, 2H) ppm.¹³C NMR (100 MHz, CDCl₃) δ: 141.9, 135.2, 134.0, 131.8 (C2), 129.0, 128.2 (C2), 128.1, 127.8, 127.0, 126.5, 126.3, 125.9, 125.2, 123.1,

87.3, 86.9, 54.3, 54.0, 45.6, 29.1 ppm. ESI calculated for $C_{22}H_{19}NS (M+H)^+$: 330.1311, Found: 330.1347.

23a: yellow oil (80%). ¹H NMR (400 MHz, CDCl₃) δ: 7.50–7.46 (m, 2H), 7.46–7.42 (m, 1H), 7.34–7.31 (m, 4H), 7.21–7.17 (m, 2H), 7.14 (dd, *J* = 6.3, 2.7 Hz, 1H), 6.39 (d, *J* = 1.6 Hz, 2H), 4.85 (s, 1H), 4.00 (q, *J* = 14.0 Hz, 2H), 3.17–3.01 (m, 2H), 2.94–2.84 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 151.7, 142.4, 135.1, 133.8, 131.8 (C2), 128.9, 128.2 (C2), 128.1, 127.8, 126.9, 125.8, 123.1, 110.1, 109.0, 87.1, 86.9, 54.3, 51.9, 45.9, 28.9 ppm. ESI calculated for

C₂₂H₁₉NO (M+H)⁺: 314.1539, Found: 314.1595.

24a: yellow oil (65%). ¹H NMR (400 MHz, CDCl₃) δ: 8.57 (d, *J* = 2.2 Hz, 2H), 7.45–7.41 (m, 2H), 7.40 (d, *J* = 5.6 Hz, 2H), 7.29 (ddt, *J* = 7.0, 5.7, 2.1 Hz, 4H), 7.21–7.17 (m, 2H), 7.14 (dd, *J* = 6.9, 2.1 Hz, 1H), 4.79 (s, 1H), 3.93 (d, *J* = 1.8 Hz, 2H), 3.14–3.00 (m, 2H), 2.85–2.75 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 149.8 (C2), 147.8, 135.1, 133.7, 131.7 (C2), 129.0, 128.2 (2C), 128.2, 127.7, 127.1 (2C), 125.9, 124.0, 122.9, 86.9, 86.9, 58.5, 54.6, 45.9, 29.0

ppm. ESI calculated for C₂₃H₂₀N₂ (M+H)⁺: 325.1699, Found: 325.1718.

25b: yellow oil (45%). ¹H NMR (400 MHz, CDCl₃) δ: δ 7.48–7.44 (m, 2H), 7.33–7.30 (m, 3H), 7.16 (d, *J* = 3.8 Hz, 3H), 7.10 (dd, *J* = 6.3, 2.2 Hz, 1H), 3.98 (d, *J* = 14.7 Hz, 1H), 3.86–3.75 (m, 2H), 3.10–3.04 (m, 1H), 3.02–2.95 (m, 1H), 2.87–2.81 (m, 1H), 1.92–1.85 (m, 2H), 1.67–1.41 (m, 5H), 0.99 (t, *J*= 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 135.3, 134.5, 131.8 (2C), 128.7, 128.3 (2C), 128.0, 126.8, 126.0, 125.6, 123.4, 87.4, 86.1, 58.0,

52.1, 47.5, 33.4, 29.7, 29.1, 22.6, 14.2 ppm. ESI calculated for C₂₂H₂₅N (M+H)⁺: 304.2060, Found: 304.2091.

26a: yellow oil (91%).¹H NMR (400 MHz, CDCl₃) δ: 7.69 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.65–7.62 (m, 1H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.38–7.35 (m, 2H), 7.27–7.23 (m, 2H), 7.22–7.18 (m, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 4.96 (s, 1H), 4.18–4.06 (m, 2H), 3.28–3.07 (m, 2H), 2.94–2.83 (m, 2H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 138.1, 137.9, 135.7, 134.1, 132.9, 131.8 (2C), 130.7,

129.1, 129.0 (2C), 128.5, 127.9, 127.3, 127.0, 125.9, 124.9, 120.2, 87.0, 86.8, 58.9, 54.8, 45.8, 29.3, 21.5 ppm. (ESI): m/z calculated for $C_{25}H_{22}BrN$ [M + H]⁺: 416.1008; found: 416.0993.

27a: yellow oil (65%). ¹H NMR (400 MHz, CDCl₃) δ: 7.75 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.69 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.53 (d, *J* = 8.9 Hz, 2H), 7.44–7.37 (m, 2H), 7.34–7.26 (m, 2H), 7.26–7.20 (m, 2H), 6.93 (d, **J** = 8.9 Hz, 2H), 5.02 (s, 1 H), 4.20–4.13 (m, 2H), 3.86 (s, 3H), 3.33–3.12 (m, 2H), 2.98–2.88 (m, 2H) ppm.¹³C NMR (100 MHz, CDCl₃) δ: 159.4, 137.8, 135.7, 134.0, 133.2 (2C), 132.8, 130.6, 129.0, 128.5, 127.8, 127.3, 126.9, 125.8, 124.8, 115.3, 113.8 (2C), 86.6, 86.1, 58.9, 55.2, 54.8, 45.8, 29.2

ppm. ESI calculated for C₂₅H₂₂BrNO [M + H]⁺: 432.0958, Found:432.0940.

28a: colorless oil (50%). ¹H NMR (400 MHz, CDCl₃) δ: 7.44–7.39 (m, 2H), 7.31–7.27 (m, 1H), 7.21–7.13 (m, 3H), 7.02 (d, *J* = 1.4 Hz, 1H), 6.94 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.87–6.83 (m, 2H), 6.81 (d, *J* = 7.9 Hz, 1H), 5.97 (d, *J* = 2.2 Hz, 2H), 4.79 (s, 1H), 3.86 (d, *J* = 3.7 Hz, 2H), 3.83 (s, 3 H), 3.13–3.01 (m, 2H), 2.88–2.79 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 159.4, 147.6, 146.7, 135.7, 134.0, 133.1 (2C), 132.3, 128.9, 127.8, 126.8, 125.8, 122.3, 115.3, 113.8 (2C), 109.6, 107.9, 100.8, 86.6, 85.9, 59.3, 55.3, 54.2, 45.6, 29.0 ppm. ESI

calculated for C₂₆H₂₃NO₃ [M + H]⁺: 398.1751, Found: 398.1473.

29a: yellow oil (30%). ¹H NMR (400 MHz, CDCl₃) δ: 7.59 (ddd, J= 7.9, 3.2, 1.5 Hz, 2H), 7.31 (td, J= 7.6, 1.4 Hz, 1H), 7.24–7.12 (m, 5H), 4.71 (s, 1H), 3.96 (s, 2H), 3.12–2.97 (m, 2H), 2.87–2.73 (m, 2H), 1.98 (s, 1H),1.57 (d, J= 2.0 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 137.7, 135.3, 134.0, 132.8, 130.5, 128.9, 128.4, 127.6, 127.3, 126.9, 125.7, 124.7, 91.3, 80.0, 65.3, 58.7, 54.0, 45.6, 31.7, 31.7, 29.1 ppm. ESI calculated for C₂₁H₂₂BrNO (M+H)⁺:

384.0958, Found: 384.0985.

30a: yellow oil, (25%). ¹H NMR (400 MHz, CDCl₃) δ: 7.48–7.45 (m, 2H), 7.39–7.34 (m, 3H), 7.19-7.11 (m, 4H) , 4.61 (s, 1H), 3.92 (d, *J* = 13.1 Hz, 1H), 3.82 (d, *J* = 13.1 Hz, 1H), 3.02– 2.96 (m, 2H), 2.83–2.75 (m, 2H), 2.02 (s, 1H), 1.57 (s, 6H) ppm.¹³C NMR (100 MHz, CDCl₃) δ: 138.2, 135.4, 134.0, 129.2 (2C), 128.9, 128.3 (2C), 127.7, 127.2, 126.8, 125.7, 91.4, 79.9,

65.3, 59.5, 53.7, 45.7, 31.7, 31.7, 28.9 ppm. ESI calculated for C₂₁H₂₃NO (M+H)⁺: 306.1852, Found: 306.1883.

4. ¹H and ¹³C NMR spectra and MS characterization

Fig S5. 1 H and 13 C NMR spectra (CDCl₃) and MS characterization of the compound 3.

Fig S6. 1 H and 13 C NMR spectra (CDCl₃) of the compound 4.

Fig S7. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 5.

Fig S8. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 6.

Fig S9. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 7.

Fig S10. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound $\bf 8$.

Fig S11. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound **9**.

Fig S12. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 10.

Fig S13. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 11.

Fig S14. 1 H and 13 C NMR spectra (CDCl₃) and MS characterization of the compound 12.

Fig S15. 1 H and 13 C NMR spectra (CDCl₃) and MS characterization of the compound 16a.

Fig S16. 1 H and 13 C NMR spectra (CDCl₃) and MS characterization of the compound 19a.

Fig S17. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound **20a**.

Fig S18. ¹H and ¹³C NMR spectra (CDCl₃) of the compound 21a.

Fig S19. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 22a.

Fig S20. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 23a.

Fig S21. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 24a.

Fig S22. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 25b.

Fig S23. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 26a.

Fig S24. ¹H and ¹³C NMR spectra (CDCl₃) of the compound 27a.

Fig S25. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 28a.

Fig S26. ¹H and ¹³C NMR spectra (CDCl₃) and MS characterization of the compound 29a.

Fig S27. 1 H and 13 C NMR spectra (CDCl₃) and MS characterization of the compound 30a.

5. **REFERENCES**

- 1 Z. Xu, X. Zhang, W. Zhang, Y. Gao and Z. Zeng, *Inorg. Chem. Commun.*, 2011, **14**, 1569–1573.
- 2 D. J. van Dijken, P. Kovař\'\iček, S. P. Ihrig and S. Hecht, J. Am. Chem. Soc., 2015, **137**, 14982–14991.
- 3 M. N. Chaur, D. Collado and J.-M. Lehn, *Chem. Eur. J.*, 2011, **17**, 248–258.
- J. M. dos Santos Filho and S. M. Pinheiro, *Green Chem.*, 2017, **19**, 2212–2224.
- 5 U. Gulati, S. Rawat, U. C. Rajesh and D. S. Rawat, *New J. Chem.*, 2017, **41**, 8341–8346.