Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Annulation of Imidazo[1,2-a]pyridines Under Metal-free Conditions

Rashmi Semwal, Abhisek Joshi, Rahul Kumar and Subbarayappa Adimurthy*

Academy of Scientific & Innovative Research, CSIR–Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002. Gujarat, INDIA.

E-mail: adimurthy@csmcri.res.in

Table of Content

S.No	Content	Page Numbers
1	Experimental Section	S2-S3
2	Photo physical data	S4-S5
3	Characterization data	S6-S18
4	References	S-18
5	¹ H & ¹³ C- NMR Spectra	S19-S51

Experimental Section:

General: All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. ¹H and ¹³C {H} NMR spectra were recorded at 600, 500, 150, and 125 MHz, respectively. The spectra were recorded in CDCl₃ as solvent. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. and coupling constants (J) were given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peaks around delta values of ¹H NMR (7.26), and ¹³C {H} NMR (77.0) are deuterated solvent chloroform, [δ value around (1.5) in ¹H NMR is of water]. Mass spectra were obtained using electron impact (EI) ionization method. Progress of the reactions was monitored by thin layer chromatography (TLC). All products were purified through column chromatography using silica gel 100-200 mesh size using hexane/ethyl acetate as eluent, unless otherwise indicated.

General procedure for the synthesis of 2-phenylimidazo[1,2-a]pyridine (1a)¹:

470 mg (5.0 mmol) of 2-aminopyridine, 1200 mg (10 mmol) of acetophenone, CuI 5 mol% (47 mg; 0.25 mmol), BF₃·Et₂O (45–50% purity); 10 mol%, (0.5 mmol) and DMF (2 mL) were placed in a 25-mL double-necked round-bottomed flask. The mixture was heated in oil bath at 60 $^{\circ}$ C for 24 h under an oxygen atmosphere (balloon). After completion of the reaction, it was allowed to attain to room temperature and then the mixture was poured into 20 mL of sodium carbonate solution. The product was extracted with DCM (50 mL X 3) and dried with anhydrous Na₂SO₄. Removal of the solvent under reduced pressure and the left residue that was purified through column chromatography using silica gel (30% EtOAc/hexane) to afford **1a**; yield: 0.799 g (82%) experimental data also matched with reported literature the same method was applied for all the reported starting substrates (1,6 and their derivatives).¹

General procedure for the synthesis of 1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3a): To a reaction tube equipped with a magnetic stir bar, added 2-phenylimidazo[1,2-a]pyridine (**1a**) (39 mg, 0.20 mmol), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (**2a**) (119 mg, 0.40 mmol), potassium carbonate (55 mg, 0.40 mmol) and 18-Crown-6 (105 mg, 0.40 mmol) in 2.0 mL of acetone. The mixture was heated in an oil bath at 45 ° C in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Acetone solvent of the reaction mixture is removed under vacuumed in rotatory evaporator. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over

anhydrous Na₂SO₄ and solvent was removed under vacuum. The crude residue was purified by silica gel column chromatography using 20 % EtOAc/hexane to afford **3a** (50.92 mg; 95 % yield).

General procedure for the synthesis of 1-phenyl-2,2a1,3-triazacyclopenta[jk]fluorene (6a): To a reaction tube equipped with a magnetic stir bar, added 2-phenylimidazo[1,2-a]pyrimidine (**1a**) (39 mg, 0.20 mmol), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (**2a**) (119 mg, 0.40 mmol), potassium carbonate (55 mg, 0.40 mmol) and 18-Crown-6 (105 mg, 0.40 mmol) in 2.0 mL of acetone. The mixture was heated in an oil bath at 45 ° C in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Acetone solvent of the reaction mixture is removed under vacuum in rotatory evaporator at low temperature. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed under vacuum. The crude residue was purified by silica gel column chromatography using 40 % EtOAc/hexane to afford **6a** (37.6 mg; 70 % yield).

General procedure for the synthesis of 7H-benzo[kl]acridine (7): To a reaction tube equipped with a magnetic stir bar, added naphthalen-1-amine (1a) (28.6 mg, 0.20 mmol), 2- (trimethylsilyl)phenyl trifluoromethanesulfonate (2a) (119 mg, 0.40 mmol), potassium carbonate (55 mg, 0.40 mmol) and 18-Crown-6 (105 mg, 0.40 mmol) in 2.0 mL of acetone. The mixture was heated in an oil bath at 45 ° C in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Acetone solvent of the reaction mixture is removed under vacuum in rotatory evaporator at low temperature. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed under vacuum at low temperature. The crude residue was purified by silica gel column chromatography using 5 % EtOAc/hexane to afford 7 (26.0 mg; 60 % yield).

Digital photograph of the fluorescent imidazopyridines in DCM under UV light

Table xx. Spectral properties of selected imidazopyridines in Ethanolat RT (10 μ M solution):

Comp	λabs(max) nm	λex(max) nm	λem(max) nm	Δ stokes nm	¢ f
3a	397	390	453	56	0.60
3d	396	390	450	54	0.68
3e	407	405	466	59	0.33
3p	403	400	461	58	0.41
3w	401	400	458	57	0.34
3x	395	390	453	58	0.53
3aa	399	390	455	56	0.67
ба	421	420	456	35	0.48

Quantum yield calculations:

For the calculation of fluorescence quantum yield an optically identical solution of Anthracene ($\Phi_f = 0.27$ in ethanol) was used as standard at an excitation wavelength of 390 nm and the quantum yield was calculated using the following equation.

$$\Phi_{unk} = \Phi_{std} \times \frac{(F_{unk}/A_{unk})}{(F_{std}/A_{std})} \left(\frac{\eta_{unk}}{\eta_{std}}\right)^2$$

Where Φ_{unk} and Φ_{std} are the radiative quantum yields of the sample and standard, respectively. A_{unk} and A_{std} are the absorbances of the sample and standard at the excitation wavelength, respectively and η_{unk} and η_{std} are the indices of refraction of the sample and standard solutions, respectively.

 F_{unk} and F_{std} are the integrated emission intensities of the corrected spectra for the sample and standard, respectively.

Characterization data :

1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3a):²

(Eluent: 20% EtOAc/hexane); 95% yield (50.9 mg); brown solid, Mp: 114-116 0 C ¹H NMR (500 MHz, CDCl₃) δ 8.37 (dd, J = 11.9, 4.7 Hz, 3H), 8.29 (d, J = 7.9 Hz, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.88 (dd, J = 8.2, 7.4 Hz, 1H), 7.74 – 7.68 (m, 1H), 7.63 (dd, J = 10.8, 4.7 Hz, 2H), 7.57 – 7.47 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.4, 139.5, 134.5, 131.2, 130.3, 129.0, 128.9, 128.3, 126.3, 124.7, 123.0, 120.7, 113.1, 108.6. ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 139.5, 134.5, 131.2, 130.3, 129.0, 128.3, 126.3, 124.7, 123.0, 120.7, 113.1, 108.6.

1-(4-methoxyphenyl)benzo[a]imidazo[5,1,2-cd]indolizine(3b): ³

(Eluent: 20% EtOAc/hexane); 72% yield (42.9 mg); yellow solid, Mp:164-166 0 C ; ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 8.1 Hz, 1H), 8.36 – 8.30 (m, 3H), 7.99 (dd, J = 20.1, 7.8 Hz, 2H), 7.89 (t, J = 7.8 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 8.7 Hz, 2H), 3.93 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 146.5, 139.5, 131.0, 130.0, 129.6, 128.8, 127.2, 126.1, 124.4, 123.0, 120.5, 120.1, 114.4, 112.6, 108.3, 55.4.

1-(4-ethylphenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3c):

(Eluent: 15% EtOAc/hexane); 81% yield (47.9 mg); gummy liquid,; ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 8.0 Hz, 1H), 8.38 (d, J = 7.9 Hz, 1H), 8.32 (d, J = 7.7 Hz, 2H), 8.06 (d, J = 8.2 Hz, 1H), 8.01 (d, J = 7.2 Hz, 1H), 7.92 (t, J = 7.9 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 7.6 Hz, 2H), 2.79 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 146.7, 145.4, 139.5, 131.9, 131.2, 130.2, 129.0, 128.6, 128.3, 126.3, 124.6, 123.0, 120.8, 112.9, 108.5, 28.8, 15.4. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₁H₁₆N₂Na: 319.1211; Found: 319.1220.

1-(4-fluorophenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3d):²

(Eluent: 15% EtOAc/hexane); 69% yield (39.4 mg); yellow solid, Mp: 130-132 0 C; ¹H NMR (500 MHz, CDCl₃) δ 8.36 – 8.21 (m, 4H), 7.98 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.89 – 7.83 (m, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.28 (d, J = 14.9, 6.3 Hz, 2H). ¹³C NMR (125 M Hz, CDCl₃) δ 163.2 (d, J_{C-F}= 249.4 Hz), 145.2, 139.3, 131.1, 130.7, 130.2, 129.9(d, J_{C-F}= 8.0 Hz), 129.0, 128.6, 126.4, 124.7, 123.0, 120.4, 116.0 (d, J_{C-F}= 21.6 Hz), 112.9, 108.5.

4-(benzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3e):

Eluent: 40% EtOAc/hexane); 82% yield (48.0 mg); yellow solid, Mp:228-230 $^{\circ}$ C ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, J = 8.1 Hz, 2H), 8.37 (d, J = 7.9 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 8.04 (dd, J = 12.0, 7.8 Hz, 2H), 7.99 – 7.92 (m, 1H), 7.84 (d, J = 8.1 Hz, 2H), 7.78 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.5, 139.5, 138.9, 132.7, 131.6, 130.7, 129.4, 128.4, 127.2, 125.4, 123.3, 121.6, 120.8, 118.8, 113.8, 111.9, 109.2. HRMS-ESI (m/z) [M+H]⁺ calcd. For C₂₀H₁₂N₃: 294.1031; Found: 294.1058.

1-(2-fluorophenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3f):

(Eluent: 10% EtOAc/hexane); 70% yield (40.0 mg); yellow solid, Mp:150-152 0 C; ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 7.9 Hz, 1H), 8.31 (ddd, J = 10.5, 6.1, 2.2 Hz, 2H), 8.09 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.95 (dd, J = 8.3, 7.3 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.63 – 7.57 (m, 1H), 7.53 – 7.46 (m, 1H), 7.37 (dddd, J = 11.7, 9.3, 7.9, 1.1 Hz,1 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.0 (d, J_{C-F}= 248.5 Hz), 139.2(d, J= 41.7 Hz), 131.5, 130.7, 130.5(d, J=8.0Hz), 129.5, 129.1, 126.5, 124.8, 122.8, 122.7, 122.5, 122.4, 116.0 (J= 21.6 Hz), 113.3, 108.6. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₁₉H₁₁FN₂Na: 309.0804; Found: 309.0778.

1-(2-chlorophenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3g) :

(Eluent: 15% EtOAc/hexane); 66% yield (39.8 mg); yellow solid, Mp:170-172 0 C; ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 7.8 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.1 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.97 (t, J = 7.7 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.53 – 7.42 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 142.5, 139.1, 133.9, 132.8, 131.5, 130.7, 130.0, 129.9, 129.2, 128.9, 127.0, 126.4, 124.8, 122.7, 113.7, 108.9. HRMS-ESI (m/z) [M+K]⁺calcd. For C₁₉H₁₁ClKN₂: 341.0248; Found: 341.0232.

1-(o-tolyl)benzo[a]imidazo[5,1,2-cd]indolizine (3h) :³

(Eluent: 10% EtOAc/hexane); 71% yield (40.0 mg); yellow solid, Mp:108-109 0 C; ¹H NMR (500 MHz, CDCl3) δ 8.45 – 8.36 (m, 3H), 8.33 (dd, J = 7.9, 0.7 Hz, 1H), 7.90 (d, J = 7.4 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.63 (dd, J = 10.7, 4.7 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.49 (dd, J = 10.6, 4.3 Hz, 1H), 3.01 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 145.4, 139.5, 134.83, 131.4, 129.0, 128.8, 128.7, 128.5, 128.3, 126.5, 124.6, 122.7, 120.8, 108.8, 16.4.

1-(4-chlorophenyl)-5-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3i)

(Eluent: 15% EtOAc/hexane); 83% yield (52.4 mg); yellow solid, Mp:198-200 0 C; ¹H NMR (500 MHz, CDCl₃) δ 8.30 – 8.18 (m, 4H), 7.86 (d, J = 8.5 Hz, 1H), 7.70 – 7.60 (m, 2H), 7.57 – 7.50 (m, 3H), 2.94 (s, 3H).13C NMR (125 MHz, CDCl₃) δ 144.3, 138.2, 134.5, 133.2, 131.4, 129.7, 129.1, 128.2, 127.7, 124.7, 123.9, 122.0, 120.5, 112.8, 17.4. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₀H₁₃ClN₂Na: 339.0657; Found: 339.0665.

41-(2-chlorophenyl)-3-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3j)

(Eluent:10% EtOAc/hexane); 63% yield (39.8 mg); yellow solid, Mp: 160-162 0 C. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.01 (dd, J = 7.4, 1.9 Hz, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.76 – 7.66 (m, 2H), 7.64 (dd, J = 7.7, 1.4 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.46 (dqd, J = 15.0, 7.4, 1.6 Hz, 2H), 3.02 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 141.4, 139.0, 134.1, 132.9, 131.6, 130.0, 129.8, 129.1, 128.8, 128.3, 127.0, 126.5, 125.1, 124.7, 122.6, 122.4, 109.1, 16.4. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₀H₁₄ClN₂: 317.0846; Found: 317.0852.

5-methyl-1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3k)

(Eluent: 10% EtOAc/hexane); 71% yield (40.0 mg); yellow solid, Mp: 200-202 0 C ¹H NMR (500 MHz, CDCl₃) δ 8.41 – 8.32 (m, 3H), 8.26 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 10.5 Hz, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.50 (dt, J = 14.8, 7.6 Hz, 2H), 2.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.0, 139.5, 137.8, 134.7, 130.9, 129.6, 129.2, 128.9, 128.7, 128.1, 124.4, 122.9, 120.7, 120.3, 112.8, 110.3, 22.8. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₀H₁₄N₂Na: 305.1055; Found: 305.1045.

1-(4-ethylphenyl)-3-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3l) :

(Eluent: 10% EtOAc/hexane); 65% yield (40.3mg); brown semi solid, ¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, J = 8.1 Hz, 1H), 8.36 – 8.28 (m, 3H), 7.91 (d, J = 7.4 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.69 (dd, J = 7.4, 0.9 Hz, 1H), 7.63 – 7.55 (m, 1H), 7.46 (d, J = 8.2 Hz, 2H), 3.01 (s, 3H), 2.79 (q, J = 7.6 Hz, 2H), 1.34 (t, J = 7.6 Hz, 3H)^{.13}C NMR (125 MHz, CDCl₃) δ 145.7, 145.1, 139.5, 132.2, 131.3, 128.9, 128.6, 126.4, 126.1, 124.4, 122.7, 120.8, 108.7, 28.8, 16.4, 15.5. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₂H₁₈N₂Na: 333.1368; Found: 333.1368.

1-(4-ethylphenyl)-5-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3m) :

(Eluent: 10% EtOAc/hexane); 60% yield (37.2 mg);brown semi solid, ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 8.1 Hz, 1H), 8.29 (t, J = 7.9 Hz, 3H), 7.89 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.9 Hz, 2H), 2.95 (s, 3H), 2.79 (d, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 3H) $^{-13}$ C NMR (125 MHz, CDCl₃) δ 146.0, 145.1, 138.3, 132.1,

131.3, 129.3, 128.49, 128.42, 128.20, 128.1, 127.6, 124.3, 123.8, 121.6, 120.5, 112.5, 28.8, 17.4, 15.4. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₂H₁₉N₂: 311.1548; Found: 311.1557.

1-(4-methoxyphenyl)-5-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3n) :

(Eluent: 20% EtOAc/hexane); 72% yield (44.9 mg); brown solid, Mp: 118-120 0 C; ¹H NMR (500 MHz, CDCl₃) δ 8.39 (dd, J = 14.0, 8.1 Hz, 2H), 8.32 (d, J = 8.7 Hz, 2H), 7.92 (d, J = 8.4 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H), 3.93 (s, 3H), 3.02 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 160.3, 145.9, 138.4, 131.4, 129.5, 129.3, 128.4, 128.2, 127.7, 127.3, 124.4, 124.0, 121.6, 120.5, 114.4, 112.3, 55.4, 17.5. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁H₁₇N₂O: 313.1341. Found: 313.1362.

1-(2-fluorophenyl)-3-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3o) :

(Eluent: 15% EtOAc/hexane); 60% yield (36.0 mg); brown semi solid, ; ¹H NMR (500 MHz, CDCl₃) δ 8.35 – 8.25 (m, 3H), 7.93 (d, J = 7.3 Hz, 1H), 7.71 (ddd, J = 6.9, 3.9, 1.0 Hz, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.45 (m, 1H), 7.36 (dddd, J = 11.5, 9.2, 7.9, 1.0 Hz, 2H), 3.02 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 160.0(d, J= 208 Hz), 139.3, 138.0, 131.7, 130.3 (d, J= 6.6 Hz), 128.8, 128.5, 126.5, 124.8, 124.79, 124.71, 122.49, 122.42 116.0(d, J=18.1 Hz), 108.9, 16.5. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₀H₁₄FN₂: 301.1141. Found: 301.1152.

3-methyl-1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3p) :

(Eluent: 10% EtOAc/hexane); 75% yield (42.3 mg); yellow solid, Mp: 198-200 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 8.40 – 8.33 (m, 3H), 8.28 (dd, J = 7.9, 0.7 Hz, 1H), 7.80 (d, J = 5.6 Hz, 2H), 7.72 (dd, J = 7.9, 7.4 Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 2.80 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 146.1, 139.5, 137.9, 134.7, 130.9, 129.7, 129.2, 128.9, 128.1, 128.2, 124.5, 123.0, 120.7, 112.8, 110.3, 22.8. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₀H₁₅N₂: 283.1235; Found: 283.1245.

1-(4-chlorophenyl)-4-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3q) :

(Eluent: 15% EtOAc/hexane); 35% yield (22.1 mg); yellow solid; Mp: 198-200 ^oC. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 8.8 Hz, 2H), 8.28 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 14.8 Hz, 2H), 7.80 – 7.72 (m, 1H), 7.58 (d, J = 8.5 Hz, 3H), 2.83 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.0, 139.8, 134.9, 133.5, 131.3, 129.8, 129.4, 125.0, 123.4, 120.9, 113.2, 110.8, 23.1. HRMS-ESI (m/z) [M+H]⁺ calcd. For C₂₀H₁₄ClN₂: 317.0846; Found: 317.0831.

methyl benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxylate (3r) :

(Eluent: 50% EtOAc/hexane); 50% yield (25.0 mg); gummy liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.85 (s, 1H), 8.77 (s, 1H), 8.62 (s, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.4 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 4.10 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 138.5, 134.8, 131.9, 129.7, 129.6, 129.5, 128.0, 125.5, 123.2, 121.3, 116.0, 109.6, 52.9. HRMS-ESI (m/z) [M+H]⁺calcd. For C₁₅H₁₁N₂O₂: 251.0821; Found: 251.0831.

benzo[a]imidazo[5,1,2-cd]indolizine (3s) :

(Eluent: 30% EtOAc/hexane); 78% yield (29.9 mg); brown semi solid, ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 8.37 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 7.0 Hz, 1H), 7.99 – 7.94 (m, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 139.5, 132.2, 131.3, 129.1, 126.2, 124.9, 124.3, 123.0, 121.0, 114.0, 109.0. HRMS-ESI (m/z) [M+H]⁺calcd. For C₁₃H₉N₂: 193.0766; Found: 193.0756.

. 5-chlorobenzo[a]imidazo[5,1,2-cd]indolizine (3t) :

(Eluent: 30% EtOAc/hexane); 45% yield (20.3 mg); brown solid, Mp: 164-166 0 C; ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, J = 8.0 Hz, 1H), 8.50 (s, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.78 (d, J = 15.2 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 133.2, 130.5, 129.5, 128.8, 127.6, 127.2, 125.3, 124.5, 120.9, 118.6, 114.3. HRMS-ESI (m/z) [M+H]⁺calcd. For C₁₃H₁₈ClN₂: 227.0376; Found: 227.0384.

6-methoxybenzo[a]imidazo[5,1,2-cd]indolizine (3u)

(Eluent: 35% EtOAc/hexane); 70% yield (31.0 mg); brown solid, Mp:178-180 0 C ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 8.16 (d, *J* = 7.3 Hz, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.99 – 7.91 (m, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 4.17 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.8, 139.3, 132.4, 130.5, 130.2, 129.6, 126.6, 124.4, 120.5, 113.3, 111.7, 105.7, 55.7. HRMS-ESI (m/z) [M+H]+calcd. For C14H11N2O: 223.0871; Found: 223.0888.

Isomer of 7-methylbenzo[a]imidazo[5,1,2-cd]indolizine and 8-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3v):

(Eluent: 30% EtOAc/hexane); 65% yield (26.7 mg); brown liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, J = 6.7 Hz, 1H), 8.25 – 8.13 (m, 1H), 8.08 (dd, J = 18.9, 9.4 Hz, 2H), 8.03 – 7.98 (m, 1H), 7.93 (t, J = 7.9 Hz, 1H), 7.50 (dd, J = 91.2, 8.1 Hz, 1H), 2.64 (d, J = 8.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 139.6, 131.9, 131.6, 130.6, 126.4, 126.2, 126.0, 122.9, 122.6, 121.1, 120.6, 113.8, 113.5, 108.8, 108.4, 22.8, 21.8. HRMS-ESI (m/z) [M+H]⁺calcd. For C₁₄ H₁₁N₂: 207.0922; Found: 207.0918.

Isomer of 1-(4-ethylphenyl)-7-methylbenzo[a]imidazo[5,1,2-cd]indolizine and 1-(4-ethylphenyl)-8-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3w):

(Eluent: 15% EtOAc/hexane); 72% yield (44.6 mg); brown semi liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.32 – 8.19 (m, 3H), 8.15 (d, J = 25.4 Hz, 1H), 8.04 – 7.97 (m, 1H), 7.95 – 7.85 (m, 2H), 7.58 – 7.37 (m, 3H), 2.79 (qd, J = 7.6, 4.4 Hz, 2H), 2.63 (d, J = 20.6 Hz, 3H), 1.35 (td, J = 7.6, 4.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.4, 146.0, 145.3, 139.5, 134.6, 131.8, 130.5, 130.2, 129.3, 128.9, 128.5, 128.3, 128.2, 126.8, 126.25, 126.21, 126.0, 122.9, 122.6, 120.8, 120.4, 112.7, 112.4, 108.2, 107.9, 28.8, 22.4, 21.7, 15.4. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₉N₂: 311.1548; Found: 311.1554.

1-(4-chlorophenyl)-5,7-dimethylbenzo[a]imidazo[5,1,2-cd]indolizine and 1-(4-chlorophenyl)-5,8dimethylbenzo[a]imidazo[5,1,2-cd]indolizine (3x)

(Eluent: 15% EtOAc/hexane); 69% yield (45.5 mg); brown solid, Mp: 145-147 0 C ; ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 8.4 Hz, 2H), 8.20 (dd, J = 11.7, 8.2 Hz, 1H), 8.10 (d, J = 16.5 Hz, 1H), 7.88 (dd, J = 8.4, 5.1 Hz, 1H), 7.65 (dd, J = 8.5, 4.5 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.42 – 7.38 (m, 1H), 2.98 (d, J = 7.0 Hz, 3H), 2.64 (d, J = 11.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.2, 138.8, 138.3, 134.8, 134.5, 134.4, 133.4, 129.8, 129.4, 126.4, 124.0, 123.7, 121.3, 120.6, 120.3, 112.7, 112.6, 22.3, 21.9, 17.4. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁H₁₆ClN₂: 331.1002; Found: 331.1008.

4-(6-methoxybenzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3y) :

(Eluent: 30% EtOAc/hexane); 80 % yield (51.6 mg); yellow solid, Mp: 275-277 0 C ; ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 8.1 Hz, 2H), 8.14 (d, J = 7.1 Hz, 1H), 8.02 (t, J = 7.0 Hz, 1H), 7.99 – 7.94 (m, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.72 (t, J = 8.1 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 4.18 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.0, 143.6, 139.3, 139.0, 132.7, 130.8, 128.5, 127.7, 121.8, 120.7, 118.9, 113.1, 112.0, 111.8, 106.4, 55.8. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁ H₁₄N₃O: 323.1059; Found: 324.1147.

4-(7-methylbenzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile and 4-(8 methylbenzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3z) :

(Eluent: 30% EtOAc/hexane); 75 % yield (46.05 mg); yellow solid, Mp: 270-272 0 C ; ¹H NMR (600 MHz, CDCl₃) δ 8.45 – 8.37 (m, 2H), 8.26 – 8.13 (m, 2H), 8.03 (dd, J = 22.6, 14.6 Hz, 1H), 7.93 (ddd, J = 16.1, 13.2, 4.7 Hz, 2H), 7.86 (dd, J = 15.6, 8.2 Hz, 2H), 7.51 (dd, J = 81.9, 8.0 Hz, 1H), 2.65 (d, J = 21.1 Hz, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 143.3, 142.8, 140.0, 139.5, 139.0, 135.7, 132.72, 132.0, 130.9, 130.7, 129.4, 128.9, 128.4, 127.2, 127.0, 126.4, 123.2, 122.9, 121.7, 120.8, 120.5, 118.9, 113.7, 113.3, 111.8, 109.0, 108.7, 22.4, 21.8. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁ H₁₄N₃: 308.1188; Found: 308.1177.

1-(4-ethylphenyl)-6-methoxybenzo[a]imidazo[5,1,2-cd]indolizine (3aa):

(Eluent: 20% EtOAc/hexane); 76% yield (49.5 mg);yellow solid, Mp: 140-142 0 C; ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.1 Hz, 2H), 8.07 (d, J = 7.2 Hz, 1H), 7.98 (dd, J = 16.0, 8.1 Hz, 2H), 7.90 (dd, J = 8.4, 7.3 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 4.12 (s, 3H), 2.79 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 146.7, 145.3, 139.3, 132.0, 130.2, 130.1, 129.1, 128.5, 128.3, 126.6, 120.7, 120.2, 113.2, 112.1, 111.2, 105.3, 55.6, 28.8, 15.4. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₂H₁₈N₂NaO: 349.1317; Found: 349.1320.

1-(tert-butyl)benzo[a]imidazo[5,1,2-cd]indolizine (3ab)

(Eluent: 10% EtOAc/hexane); 62% yield (30.7 mg); brown semi liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 1H), 8.33 (d, J = 8.2 Hz, 1H), 8.07 – 7.99 (m, 2H), 7.91 (dd, J = 8.5, 7.2 Hz, 1H), 7.79 – 7.72 (m, 1H), 7.62 – 7.54 (m, 1H), 1.77 (s, 9H).; ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 130.8, 128.7, 125.3, 124.0, 122.9, 121.5, 112.5, 108.1, 30.9. HRMS-ESI (m/z) [M+H]⁺calcd. For C₁₇H₁₆N₂Na:271.1211; Found: 271.1207.

1-phenyl-2,2a1,3-triazacyclopenta[jk]fluorine (6a) :²

(Eluent: 20% EtOAc/hexane); 70% yield (37.6 mg); brown gummy solid, ¹H NMR (600 MHz,) δ 9.18 (d, J = 4.7 Hz, 1H), 8.47 (dd, J = 12.8, 5.5 Hz, 4H), 7.99 (d, J = 5.1 Hz, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.71 – 7.63 (m, 3H), 7.55 (t, J = 7.3 Hz, 1H) ¹³C NMR (150 MHz,) δ 150.4, 148.8, 135.1, 133.8, 131.7, 130.7, 129.9, 129.1, 128.7, 125.5, 124.9, 121.4, 104.5.

7H-benzo[kl]acridine (7):4

(Eluent: 5% EtOAc/hexane); 60% yield (26.0 mg); brown liquid, ¹H NMR (500 MHz, CDCl₃) δ 6.98 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.47 – 6.36 (m, 3H), 6.32 (d, J = 4.8 Hz, 2H), 6.22 (t, J = 7.6 Hz, 2H), 6.12 – 6.06 (m, 1H), 5.80 (t, J = 7.5 Hz, 1H).; ¹³C NMR (125 MHz, CDCl₃) δ 143.5, 139.4, 134.7, 133.6, 128.3, 128.0, 127.1, 126.0, 125.9, 125.8, 125.3, 121.8, 121.4, 119.6, 118.6, 113.4, 74.5.

N-(2-methoxyphenyl)naphthalen-1-amine (8) :

(Eluent: 5% (EtOAc/hexane); 63% yield (31.3 mg) brown liquid,; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, J = 8.2, 0.9 Hz, 1H), 7.93 – 7.87 (m, 1H), 7.62 (t, J = 4.6 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.45 – 7.42 (m, 2H), 7.19 (t, J = 8.1 Hz, 1H), 6.63 – 6.56 (m, 2H), 6.54 – 6.48 (m, 1H), 5.95 (s, 1H), 3.78 (s, 3H).;

¹³C NMR (125 MHz, CDCl₃) δ 160.6, 146.3, 138.3, 134.6, 130.0, 128.4, 127.9, 126.0, 125.6, 123.2, 121.8, 116.7, 109.7, 105.5, 102.8, 55.1.

N-(m-tolyl)naphthalen-1-amine (9):⁵

(Eluent: 3% (EtOAc/hexane); 60% yield (27.9 mg); brown liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 8.01 (m, 1H), 7.90 – 7.86 (m, 1H), 7.60 (t, J = 4.6 Hz, 1H), 7.50 (pd, J = 6.8, 1.4 Hz, 2H), 7.42 (d, J = 4.6 Hz, 2H), 7.17 (t, J = 8.1 Hz, 1H), 6.62 – 6.57 (m, 1H), 6.56 (t, J = 2.2 Hz, 1H), 6.48 (dd, J = 8.2, 2.3 Hz, 1H), 5.94 (s, 1H), 3.77 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 160.7, 146.3, 138.3, 134.6, 130.0, 128.4, 127.9, 126.1, 125.8, 123.2, 121.8, 116.7, 109.7, 105.5, 102.9, 55.1.

References:

- 1. D. C. Mohan, R. R. Donthiri, S. N. Rao, S. Adimurthy, *Adv. Synth. Catal.* 2013, **355**, 2217 2221.
- M. Aginagalde, Y. Vara, A. Arrieta, R. Zangi, V. L. Cebolla, A. D. Camón, and F. P. Cossío. Tandem [8+2] Cycloaddition – [2+6+2] Deh ydrogenation Reactions Involving Imidazo[1,2a]pyridines and Imidazo[1,2-a]pyrimidines, J. Org. Chem. 2010, 75, 2776–2784.
- H. Wanga, C. Chena, Z. Huanga, L. Yaob, B. Lia, J. Peng. Palladium-Catalyzed Double C–H Arylation Reaction: Tandem Synthesis of Benzo[a]imidazo[5,1,2-cd]indolizines from Imidazo-[1,2-a]pyridines and o-ihaloarenes, *Synthesis*, 2015, 47, 2457–2466.
- Baek, Yeong Mi et al From Repub. Korean Kongkae Taeho Kongbo, 2015086071, 27 Jul 2015.
- 5. From Ger., 102012005215, 11 Apr 2013.

¹H NMR and ¹³C NMR Spectra

150 140 130 120 110 100 90 80 70 60 ¹³C NMR of 3a

200 190 180 170 160

-0,00 -0.01

20 10 0

30

50 40

NMR of 3b

100 f1 (ppm)

90 80

70 60 50 40 30 20 10 0

110

00 190 180 170 160 150 140 130 120

-500

¹³C NMR of 3f

¹H NMR of 3g

¹³C NMR of 3g

¹³C NMR of 3h

¹³C NMR of 3i

¹³C NMR of 3j

¹³C NMR of 3k

¹H NMR of 31

¹³C NMR of 31

¹H NMR of 3m

¹³C NMR of 3m

¹³C NMR of 3n

¹³C NMR of 30

¹³C NMR of 3p

¹³C NMR of 3q

¹³C NMR of 3r

¹³C NMR of 3s

¹³C NMR of 3t

¹³C NMR of 3u

¹³C NMR of 3v

¹³C NMR of 3w

¹³C NMR of 3x

¹³C NMR of 3y

¹³C NMR of 3aa

¹³C NMR of 3ab

¹³C NMR of 6a

¹³C NMR of 7

¹³C NMR of 8

¹³C NMR of 9