Annulation of Imidazo[1,2-a]pyridines Under Metal-free Conditions

Rashmi Semwal, Abhisek Joshi, Rahul Kumar and Subbarayappa Adimurthy* Academy of Scientific \& Innovative Research, CSIR-Central Salt \& Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002. Gujarat, INDIA.

E-mail: adimurthy@csmcri.res.in
Table of Content

S.No	Content	Page Numbers
1	Experimental Section	S2-S3
2	Photo physical data	S4-S5
3	Characterization data	S6-S18
4	References	S-18
5	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra	$\mathrm{S} 19-\mathrm{S} 51$

Experimental Section:

General: All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectra were recorded at $600,500,150$, and 125 MHz , respectively. The spectra were recorded in CDCl_{3} as solvent. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. and coupling constants (J) were given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peaks around delta values of ${ }^{1} \mathrm{H}$ NMR (7.26), and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (77.0) are deuterated solvent chloroform, [δ value around (1.5) in ${ }^{1} \mathrm{H}$ NMR is of water]. Mass spectra were obtained using electron impact (EI) ionization method. Progress of the reactions was monitored by thin layer chromatography (TLC). All products were purified through column chromatography using silica gel 100-200 mesh size using hexane/ethyl acetate as eluent, unless otherwise indicated.

General procedure for the synthesis of 2-phenylimidazo[1,2-a]pyridine (1a) ${ }^{\mathbf{1}}$:

470 mg (5.0 mmol) of 2-aminopyridine, $1200 \mathrm{mg}(10 \mathrm{mmol})$ of acetophenone, CuI $5 \mathrm{~mol} \%(47 \mathrm{mg}$; $0.25 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(45-50 \%$ purity $) ; 10 \mathrm{~mol} \%,(0.5 \mathrm{mmol})$ and $\mathrm{DMF}(2 \mathrm{~mL})$ were placed in a $25-$ mL double-necked round-bottomed flask. The mixture was heated in oil bath at $60^{\circ} \mathrm{C}$ for 24 h under an oxygen atmosphere (balloon). After completion of the reaction, it was allowed to attain to room temperature and then the mixture was poured into 20 mL of sodium carbonate solution. The product was extracted with DCM (50 mL X 3) and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure and the left residue that was purified through column chromatography using silica gel ($30 \% \mathrm{EtOAc} /$ hexane) to afford 1a; yield: $0.799 \mathrm{~g}(82 \%)$ experimental data also matched with reported literature the same method was applied for all the reported starting substrates (1,6 and their derivatives). ${ }^{1}$

General procedure for the synthesis of 1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3a): To a reaction tube equipped with a magnetic stir bar, added 2-phenylimidazo[1,2-a]pyridine (1a) (39 mg, 0.20 mmol), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (2a) ($119 \mathrm{mg}, 0.40 \mathrm{mmol}$), potassium carbonate ($55 \mathrm{mg}, 0.40 \mathrm{mmol}$) and 18-Crown-6 ($105 \mathrm{mg}, 0.40 \mathrm{mmol}$) in 2.0 mL of acetone. The mixture was heated in an oil bath at $45^{\circ} \mathrm{C}$ in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Acetone solvent of the reaction mixture is removed under vacuumed in rotatory evaporator. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under vacuum. The crude residue was purified by silica gel column chromatography using 20 \% EtOAc/hexane to afford $\mathbf{3 a}$ ($50.92 \mathrm{mg} ; 95 \%$ yield).

General procedure for the synthesis of 1-phenyl-2,2a1,3-triazacyclopenta[jk]fluorene (6a): To a reaction tube equipped with a magnetic stir bar, added 2-phenylimidazo[1,2-a]pyrimidine (1a) (39 $\mathrm{mg}, 0.20 \mathrm{mmol}$), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (2a) ($119 \mathrm{mg}, 0.40 \mathrm{mmol}$), potassium carbonate ($55 \mathrm{mg}, 0.40 \mathrm{mmol}$) and 18-Crown-6 ($105 \mathrm{mg}, 0.40 \mathrm{mmol}$) in 2.0 mL of acetone. The mixture was heated in an oil bath at $45^{\circ} \mathrm{C}$ in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Acetone solvent of the reaction mixture is removed under vacuum in rotatory evaporator at low temperature. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under vacuum. The crude residue was purified by silica gel column chromatography using 40 \% EtOAc/hexane to afford 6a (37.6 mg ; 70% yield).

General procedure for the synthesis of $\mathbf{7 H}$-benzo[kl]acridine (7): To a reaction tube equipped with a magnetic stir bar, added naphthalen-1-amine (1a) (28.6 mg, 0.20 mmol), 2(trimethylsilyl)phenyl trifluoromethanesulfonate (2a) ($119 \mathrm{mg}, 0.40 \mathrm{mmol}$), potassium carbonate (55 $\mathrm{mg}, 0.40 \mathrm{mmol}$) and 18 -Crown-6 ($105 \mathrm{mg}, 0.40 \mathrm{mmol}$) in 2.0 mL of acetone. The mixture was heated in an oil bath at $45^{\circ} \mathrm{C}$ in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Acetone solvent of the reaction mixture is removed under vacuum in rotatory evaporator at low temperature. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under vacuum at low temperature. The crude residue was purified by silica gel column chromatography using 5 \% EtOAc/hexane to afford 7 (26.0 $\mathrm{mg} ; 60$ \% yield).

Digital photograph of the fluorescent imidazopyridines in DCM under UV light

Table xx. Spectral properties of selected imidazopyridines in Ethanol at RT (10μ M solution):

Comp	$\lambda_{\text {abs(max) }} \mathrm{nm}$	$\lambda_{\text {ex(max) }} \mathrm{nm}$	$\lambda_{\text {em(max) }} \mathrm{nm}$	$\Delta_{\text {stokes }}$ nm	ϕ_{f}
3a	397	390	453	56	0.60
3d	396	390	450	54	0.68
3e	407	405	466	59	0.33
3p	403	400	461	58	0.41
3w	401	400	458	57	0.34
3x	395	390	453	58	0.53
3aa	399	390	455	56	0.67
6a	421	420	456	35	0.48

Quantum yield calculations:

For the calculation of fluorescence quantum yield an optically identical solution of Anthracene ($\Phi_{\mathrm{f}}=0.27$ in ethanol) was used as standard at an excitation wavelength of 390 nm and the quantum yield was calculated using the following equation.

$$
\phi_{\text {unk }}=\phi_{s t d} \times \frac{\left(F_{u n k} / A_{u n k}\right)}{\left(F_{s t d} / A_{s t d}\right)}\left(\frac{\eta_{u n k}}{\eta_{s t d}}\right)^{2}
$$

Where $\Phi_{\text {unk }}$ and $\Phi_{\text {std }}$ are the radiative quantum yields of the sample and standard, respectively. $A_{\text {unk }}$ and $A_{\text {std }}$ are the absorbances of the sample and standard at the excitation wavelength, respectively and $\eta_{\text {unk }}$ and $\eta_{\text {std }}$ are the indices of refraction of the sample and standard solutions, respectively.
$F_{\text {unk }}$ and $F_{\text {std }}$ are the integrated emission intensities of the corrected spectra for the sample and standard, respectively.

Characterization data :

1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3a): ${ }^{2}$

(Eluent: 20\% EtOAc/hexane); 95\% yield (50.9 mg); brown solid, Mp: $114-116{ }^{0} \mathrm{C}^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{dd}, \mathrm{J}=11.9,4.7 \mathrm{~Hz}, 3 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, \mathrm{J}=8.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=10.8$, $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,139.5,134.5,131.2$, $130.3,129.0,128.9,128.3,126.3,124.7,123.0,120.7,113.1,108.6 .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 146.4,139.5,134.5,131.2,130.3,129.0,128.3,126.3,124.7,123.0,120.7,113.1,108.6$.
1-(4-methoxyphenyl)benzo[a]imidazo[5,1,2-cd]indolizine(3b): ${ }^{3}$

(Eluent: $20 \% \mathrm{EtOAc} / \mathrm{hexane}$); 72% yield (42.9 mg); yellow solid, Mp:164-166 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.30(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{dd}, \mathrm{J}=20.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,146.5,139.5,131.0,130.0,129.6,128.8,127.2,126.1$, $124.4,123.0,120.5,120.1,114.4,112.6,108.3,55.4$.

1-(4-ethylphenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3c):

(Eluent: 15% EtOAc/hexane); 81% yield (47.9 mg); gummy liquid,; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 146.7,145.4,139.5,131.9,131.2,130.2,129.0,128.6,128.3,126.3,124.6,123.0,120.8$, 112.9, 108.5, 28.8, 15.4. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}$: 319.1211; Found: 319.1220 .

1-(4-fluorophenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3d): ${ }^{2}$

(Eluent: 15\% EtOAc/hexane); 69\% yield (39.4 mg); yellow solid, Mp: $130-132{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36-8.21(\mathrm{~m}, 4 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83$ $(\mathrm{m}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=14.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) \delta 163.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249.4 \mathrm{~Hz}\right), 145.2,139.3,131.1,130.7,130.2,129.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.0\right.$ $\mathrm{Hz}), 129.0,128.6,126.4,124.7,123.0,120.4,116.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 112.9,108.5$.

4-(benzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3e):

Eluent: 40% EtOAc/hexane); 82% yield (48.0 mg); yellow solid, $\mathrm{Mp}: 228-230{ }^{0} \mathrm{C}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}$ $=12.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.99-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 143.5,139.5,138.9,132.7,131.6,130.7,129.4,128.4$, $127.2,125.4,123.3,121.6,120.8,118.8,113.8,111.9,109.2$. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{3}$: 294.1031; Found: 294.1058.

1-(2-fluorophenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3f):

(Eluent: 10\% EtOAc/hexane); 70\% yield (40.0 mg); yellow solid, Mp: $150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{ddd}, \mathrm{J}=10.5,6.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.37(d d d d, \mathrm{~J}=11.7,9.3,7.9,1.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 248.5 Hz), 139.2(d, J=41.7 Hz), 131.5, 130.7, 130.5(d, J=8.0Hz), 129.5, 129.1, 126.5, 124.8, 122.8, 122.7, 122.5, 122.4, $116.0(\mathrm{~J}=21.6 \mathrm{~Hz})$, 113.3, 108.6. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{calcd}$. For $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{Na}: 309.0804$; Found: 309.0778.

1-(2-chlorophenyl)benzo[a]imidazo[5,1,2-cd]indolizine (3g) :

(Eluent: 15% EtOAc/hexane); 66% yield (39.8 mg); yellow solid, Mp:170-172 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5$, $139.1,133.9,132.8,131.5,130.7,130.0,129.9,129.2,128.9,127.0,126.4,124.8,122.7,113.7$, 108.9. HRMS-ESI (m/z) [M+K] ${ }^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ClKN}_{2}$: 341.0248; Found: 341.0232.

1-(o-tolyl)benzo[a]imidazo[5,1,2-cd]indolizine (3h) : ${ }^{3}$

(Eluent: 10% EtOAc/hexane); 71% yield (40.0 mg); yellow solid, $\mathrm{Mp}: 108-109{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.45-8.36(\mathrm{~m}, 3 \mathrm{H}), 8.33(\mathrm{dd}, \mathrm{J}=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=10.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (dd, J = 10.6, 4.3 Hz, 1H), $3.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,139.5,134.83$, $131.4,129.0,128.8,128.7,128.5,128.3,126.5,124.6,122.7,120.8,108.8,16.4$.

1-(4-chlorophenyl)-5-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3i)

(Eluent: 15\% EtOAc/hexane); 83\% yield (52.4 mg); yellow solid, Mp:198-200 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-8.18(\mathrm{~m}, 4 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}$, 3 H), $2.94(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.3,138.2,134.5,133.2,131.4,129.7,129.1$, 128.2, 127.7, 124.7, 123.9, 122.0, 120.5, 112.8, 17.4. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{Na}$: 339.0657; Found: 339.0665.

41-(2-chlorophenyl)-3-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3j)

(Eluent: $10 \% \mathrm{EtOAc} /$ hexane); 63% yield (39.8 mg); yellow solid, Mp: 160-162 ${ }^{0} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ $(\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46$ $(\mathrm{dqd}, \mathrm{J}=15.0,7.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4,139.0,134.1$, $132.9,131.6,130.0,129.8,129.1,128.8,128.3,127.0,126.5,125.1,124.7,122.6,122.4,109.1,16.4$. HRMS-ESI (m/z) [M+H] ${ }^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{2}$: 317.0846; Found: 317.0852.
5-methyl-1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3k)

(Eluent: 10% EtOAc/hexane); 71% yield (40.0 mg); yellow solid, $\mathrm{Mp}: 200-202{ }^{0} \mathrm{C}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41-8.32(\mathrm{~m}, 3 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dt}, \mathrm{J}=14.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0,139.5,137.8,134.7,130.9,129.6,129.2,128.9,128.7,128.1,124.4,122.9$, 120.7, 120.3, 112.8, 110.3, 22.8. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na}$: 305.1055; Found: 305.1045 .

1-(4-ethylphenyl)-3-methylbenzo[a]imidazo[5,1,2-cd]indolizine (31) :

(Eluent: $10 \% \mathrm{EtOAc} /$ hexane); 65% yield (40.3 mg); brown semi solid, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.42(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.28(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{dd}$, $\mathrm{J}=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})^{.13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7$, 145.1, 139.5, 132.2, 131.3, 128.9, 128.6, 126.4, 126.1, 124.4, 122.7, 120.8, 108.7, 28.8, 16.4, 15.5. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{calcd}$. For $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}: 333.1368$; Found: 333.1368 .

1-(4-ethylphenyl)-5-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3m) :

(Eluent: $10 \% \mathrm{EtOAc} /$ hexane); 60% yield (37.2 mg);brown semi solid, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.95$ (s, 3H), 2.79 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.0,145.1,138.3,132.1$,
$131.3,129.3,128.49,128.42,128.20,128.1,127.6,124.3,123.8,121.6,120.5,112.5,28.8,17.4$, 15.4. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2}$: 311.1548; Found: 311.1557.

1-(4-methoxyphenyl)-5-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3n) :

(Eluent: 20\% EtOAc/hexane); 72% yield (44.9 mg); brown solid, Mp: $118-120{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{dd}, \mathrm{J}=14.0,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.93 (s, 3H), $3.02(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,145.9,138.4,131.4,129.5,129.3$, 128.4, 128.2, 127.7, 127.3, 124.4, 124.0, 121.6, 120.5, 114.4, 112.3, 55.4, 17.5. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$: 313.1341. Found: 313.1362.

1-(2-fluorophenyl)-3-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3o) :

(Eluent: $15 \% \mathrm{EtOAc} /$ hexane $) ; 60 \%$ yield $(36.0 \mathrm{mg})$; brown semi solid, ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 8.35-8.25(\mathrm{~m}, 3 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, \mathrm{J}=6.9,3.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (dddd, $\mathrm{J}=11.5,9.2,7.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0(\mathrm{~d}, \mathrm{~J}=208 \mathrm{~Hz}), 139.3,138.0,131.7,130.3(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}), 128.8,128.5,126.5$, 124.8 , 124.79 , 124.71 , 122.49 , $122.42116 .0(\mathrm{~d}, \mathrm{~J}=18.1 \mathrm{~Hz})$, 108.9, 16.5. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{FN}_{2}$: 301.1141. Found: 301.1152.

3-methyl-1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (3p) :

(Eluent: 10% EtOAc/hexane); 75% yield (42.3 mg); yellow solid, $\mathrm{Mp}: 198-200{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.40-8.33(\mathrm{~m}, 3 \mathrm{H}), 8.28(\mathrm{dd}, \mathrm{J}=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=7.9,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.1,139.5,137.9,134.7,130.9,129.7,129.2,128.9,128.1,128.2,124.5,123.0,120.7$, 112.8, 110.3, 22.8. HRMS-ESI (m/z) [M+H] ${ }^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{2}$: 283.1235; Found: 283.1245.

1-(4-chlorophenyl)-4-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3q) :

(Eluent: 15% EtOAc/hexane); 35% yield (22.1 mg); yellow solid; Mp: 198-200 ${ }^{0} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.0,139.8$, $134.9,133.5,131.3,129.8,129.4,125.0,123.4,120.9,113.2,110.8,23.1 . \operatorname{HRMS}-E S I(m / z)[M+H]^{+}$ calcd. For $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{2}$: 317.0846; Found: 317.0831.
methyl benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxylate (3r) :

(Eluent: 50% EtOAc/hexane); 50% yield (25.0 mg); gummy liquid, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.85(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,138.5$, $134.8,131.9,129.7,129.6,129.5,128.0,125.5,123.2,121.3,116.0,109.6,52.9$. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$: 251.0821; Found: 251.0831.

benzo[a]imidazo[5,1,2-cd]indolizine (3s) :

(Eluent: $30 \% \mathrm{EtOAc} /$ hexane); 78% yield (29.9 mg); brown semi solid, ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.51(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5,132.2,131.3,129.1,126.2,124.9,124.3,123.0,121.0,114.0,109.0$. HRMSESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2}$: 193.0766; Found: 193.0756.

5-chlorobenzo[a]imidazo[5,1,2-cd]indolizine (3t) :

(Eluent: 30\% EtOAc/hexane); 45% yield (20.3 mg); brown solid, Mp: $164-166{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 133.2,130.5,129.5,128.8,127.6,127.2,125.3,124.5,120.9,118.6,114.3$. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClN}_{2}$: 227.0376; Found: 227.0384.

6-methoxybenzo[a]imidazo[5,1,2-cd]indolizine (3u)

(Eluent: 35% EtOAc/hexane); 70% yield (31.0 mg); brown solid, Mp:178-180 ${ }^{0} \mathrm{C}{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.91(\mathrm{~m}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8,139.3,132.4,130.5,130.2,129.6,126.6,124.4,120.5,113.3,111.7$, 105.7, 55.7. HRMS-ESI (m/z) [M+H]+calcd. For C14H11N2O: 223.0871; Found: 223.0888.

Isomer of 7-methylbenzo[a]imidazo[5,1,2-cd]indolizine and 8-methylbenzo[a]imidazo[5,1,2cd]indolizine (3v):

(Eluent: 30% EtOAc/hexane); 65% yield (26.7 mg); brown liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.45(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=18.9,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03-7.98(\mathrm{~m}, 1 \mathrm{H})$, $7.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=91.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,131.9,131.6,130.6,126.4,126.2,126.0,122.9,122.6,121.1,120.6,113.8$, 113.5, 108.8, 108.4, 22.8, 21.8. HRMS-ESI (m/z) [M+H] ${ }^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2}$: 207.0922; Found: 207.0918 .

Isomer of 1-(4-ethylphenyl)-7-methylbenzo[a]imidazo[5,1,2-cd]indolizine and 1-(4-ethylphenyl)-8-methylbenzo[a]imidazo[5,1,2-cd]indolizine (3w):

(Eluent: $15 \% \mathrm{EtOAc} /$ hexane $) ; 72 \%$ yield (44.6 mg); brown semi liquid, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.32-8.19(\mathrm{~m}, 3 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=25.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.58-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{qd}, \mathrm{J}=7.6,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, \mathrm{~J}=20.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{td}, \mathrm{J}=7.6,4.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,146.0,145.3,139.5,134.6,131.8,130.5,130.2,129.3,128.9$, $128.5,128.3,128.2,126.8,126.25,126.21,126.0,122.9,122.6,120.8,120.4,112.7,112.4,108.2$, 107.9, 28.8, 22.4, 21.7, 15.4. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2}: 311.1548$; Found: 311.1554.

1-(4-chlorophenyl)-5,7-dimethylbenzo[a]imidazo[5,1,2-cd]indolizine and 1-(4-chlorophenyl)-5,8-dimethylbenzo[a]imidazo[5,1,2-cd]indolizine (3x)

(Eluent: 15\% EtOAc/hexane); 69\% yield (45.5 mg); brown solid, Mp: $145-147{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{dd}, \mathrm{J}=11.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.88 (dd, J = 8.4, 5.1 Hz, 1H), $7.65(\mathrm{dd}, \mathrm{J}=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}$, 1 H), $2.98(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.64(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,138.8$, $138.3,134.8,134.5,134.4,133.4,129.8,129.4,126.4,124.0,123.7,121.3,120.6,120.3,112.7$, 112.6, 22.3, 21.9, 17.4. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{2}$: 331.1002; Found: 331.1008.

4-(6-methoxybenzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3y) :

(Eluent: 30\% EtOAc/hexane); 80% yield (51.6 mg); yellow solid, Mp: 275-277 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-$ $7.94(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,143.6,139.3,139.0,132.7,130.8$, $128.5,127.7,121.8,120.7,118.9,113.1,112.0,111.8,106.4,55.8$. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}: 323.1059$; Found: 324.1147.

4-(7-methylbenzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile and 4-(8

 methylbenzo[a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3z) :

(Eluent: 30\% EtOAc/hexane); 75% yield (46.05 mg); yellow solid, Mp: 270-272 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.26-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{dd}, \mathrm{J}=22.6,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (ddd, $\mathrm{J}=16.1,13.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, \mathrm{J}=15.6,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=81.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, \mathrm{~J}$ $=21.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3$, 142.8, 140.0, 139.5, 139.0, 135.7, 132.72, $132.0,130.9,130.7,129.4,128.9,128.4,127.2,127.0,126.4,123.2,122.9,121.7,120.8,120.5$, $118.9,113.7,113.3,111.8,109.0,108.7,22.4,21.8$. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{3}$: 308.1188; Found: 308.1177.

1-(4-ethylphenyl)-6-methoxybenzo[a]imidazo[5,1,2-cd]indolizine (3aa) :

(Eluent: 20\% EtOAc/hexane); 76\% yield (49.5 mg);yellow solid, Mp: 140-142 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, \mathrm{J}=16.0,8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.90(\mathrm{dd}, \mathrm{J}=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $156.8,146.7,145.3,139.3,132.0,130.2,130.1,129.1,128.5,128.3,126.6,120.7,120.2,113.2$, 112.1, 111.2, 105.3, 55.6, 28.8, 15.4. HRMS-ESI (m/z) [M+Na] ${ }^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}: 349.1317$; Found: 349.1320.

1-(tert-butyl)benzo[a]imidazo[5,1,2-cd]indolizine (3ab)

(Eluent: 10% EtOAc/hexane); 62% yield (30.7 mg); brown semi liquid, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{dd}, \mathrm{J}=8.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,130.8$, 128.7, 125.3, 124.0, 122.9, 121.5, 112.5, 108.1, 30.9. HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}: 271.1211$; Found: 271.1207.

1-phenyl-2,2a1,3-triazacyclopenta[jk]fluorine (6a) : ${ }^{2}$

(Eluent: 20\% EtOAc/hexane); 70% yield (37.6 mg); brown gummy solid, ${ }^{1} \mathrm{H}$ NMR (600 MHz ,) δ $9.18(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=12.8,5.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.99(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 MHz,) $\delta 150.4,148.8,135.1,133.8$, 131.7, 130.7, 129.9, 129.1, 128.7, 125.5, 124.9, 121.4, 104.5.

7H-benzo[kl]acridine (7) : ${ }^{\mathbf{4}}$

(Eluent: 5\% EtOAc/hexane); 60% yield (26.0 mg); brown liquid, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.98(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.36(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.22$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.12-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $143.5,139.4,134.7,133.6,128.3,128.0,127.1,126.0,125.9,125.8,125.3,121.8,121.4,119.6$, 118.6, 113.4, 74.5 .

N -(2-methoxyphenyl)naphthalen-1-amine (8) :

(Eluent: 5\% (EtOAc/hexane); 63% yield (31.3 mg) brown liquid, ${ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (dd, J = 8.2, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.93-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.54-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.;
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 160.6,146.3,138.3,134.6,130.0,128.4,127.9,126.0,125.6,123.2$, 121.8, 116.7, 109.7, 105.5, 102.8, 55.1.

N -(m-tolyl)naphthalen-1-amine (9) : ${ }^{5}$

(Eluent: 3% (EtOAc/hexane); 60% yield (27.9 mg); brown liquid, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06$ $-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{pd}, \mathrm{J}=6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}$ $=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, \mathrm{J}=8.2$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,146.3,138.3$, 134.6, $130.0,128.4,127.9,126.1,125.8,123.2,121.8,116.7,109.7,105.5,102.9,55.1$.

References:

1. D. C. Mohan, R. R. Donthiri, S. N. Rao, S. Adimurthy, Adv. Synth. Catal. 2013, 355, 2217 2221.
2. M. Aginagalde, Y. Vara, A. Arrieta, R. Zangi, V. L. Cebolla, A. D. Camón, and F. P. Cossío. Tandem [8+2] Cycloaddition - [2+6+2] Deh ydrogenation Reactions Involving Imidazo[1,2a]pyridines and Imidazo[1,2-a]pyrimidines, J. Org. Chem. 2010, 75, 2776-2784.
3. H. Wanga, C. Chena, Z. Huanga, L. Yaob, B. Lia, J. Peng. Palladium-Catalyzed Double C-H Arylation Reaction: Tandem Synthesis of Benzo[a]imidazo[5,1,2-cd]indolizines from Imidazo-[1,2-a]pyridines and o-ihaloarenes, Synthesis, 2015, 47, 2457-2466.
4. Baek, Yeong Mi et al From Repub. Korean Kongkae Taeho Kongbo, 2015086071, 27 Jul 2015.
5. From Ger., 102012005215, 11 Apr 2013.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR of CDCl_{3}

${ }^{13}$ C NMR of 3 b

${ }^{1} \mathrm{H}$ NMR of 3 c

${ }^{13} \mathrm{C}$ NMR of 3 c

${ }^{1} \mathrm{H}$ NMR of 3 e

${ }^{13}$ C NMR of 3 e

${ }^{13} \mathrm{C}$ NMR of 3 g

${ }^{13} \mathrm{C}$ NMR of 3 i

${ }^{13} \mathrm{C}$ NMR of 3 k

${ }^{1} \mathrm{H}$ NMR of 3 m

${ }^{13} \mathrm{C}$ NMR of 3 m

${ }^{13}$ C NMR of $3 n$

${ }^{13}$ C NMR of $3 q$

${ }^{1} \mathrm{H}$ NMR of 3 t

${ }^{13} \mathrm{C}$ NMR of 3 aa

${ }^{13} \mathrm{C}$ NMR of 3ab

${ }^{1} \mathrm{H}$ NMR of 7

${ }^{13} \mathrm{C}$ NMR of 7

${ }^{1} \mathrm{H}$ NMR of 8

${ }^{13} \mathrm{C}$ NMR of 8

${ }^{13} \mathrm{C}$ NMR of 9

