Supplementary Information

Mesoporous HBeta Zeolite via Zeolitic Dissolution-Recrystallization Successive Treatment for Vapor-Phase Doebner-Von Miller Reaction to Quinolines

An Li^{a#*}, CaiWu Luo^{b#}, Fen Wu^{a#}, Shuqin Zheng^a, LiJun Li^a, JianCe Zhang^a, Liang Chen

^a, Kun Liu ^{a*} and Congshan Zhou ^{a*}

^a Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, 414000, P. R. China.

^b School of Environmental Protection and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.

[#] Coauthors equally contributed to this work.

* Corresponding author. Email: <u>anleechn@hotmail.com</u> & <u>liukun328@126.com</u> & <u>zhoucongsh@126.com</u>.

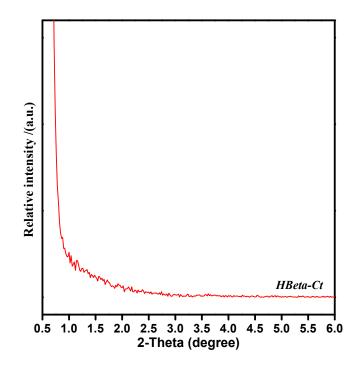
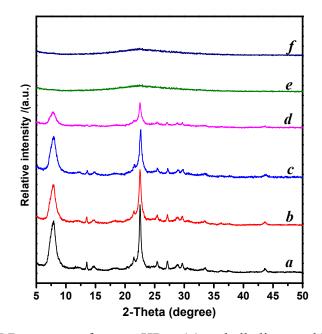
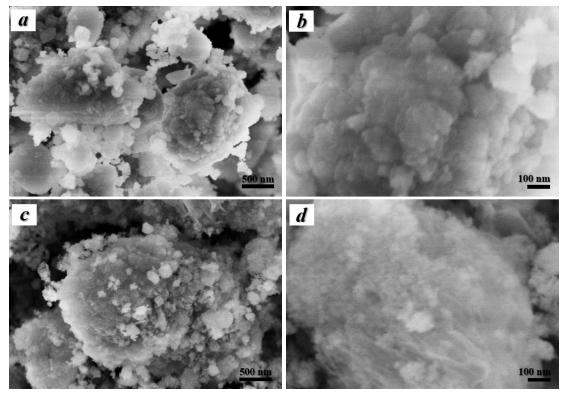




Figure 1S. the low-angle XRD patterns of HBeta-Ct.

Figure 2S. the XRD patterns of parent HBeta(a) and alkali-treated HBeta with NaOH concentrations of 0.2(b) 0.4(c) 0.6(d) 1.0(e) and 1.85(f) mol/L at 40 °C for 70 min.

Figure 3S. The SEM images of HBeta(a, b) and HBeta-Ct(c, d)

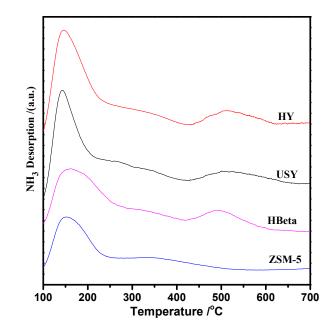


Figure 4S. the NH₃-TPD for various zeolite catalysts

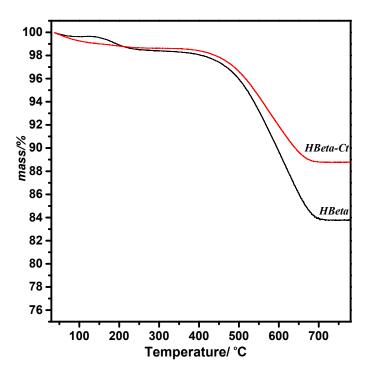


Figure 5S. the TG profiles of deactivated catalysts

_	Table 15. the textural properties of catalysis.							
Catalyst		Si/Al ratio ^a	Relative crystallinity	Yield of product				
	HBeta	25	100					
	HBeta-Ct	22	94.3	93.4				

Table 1S. the textural properties of catalysts.

^a The Si/Al ratio of the parent and treated Beta zeolite was determined via ICP-OES.

Catalyst	T _i ^a (°C	T_i^a (°C) and A_i^b (mmol/g) for various desorption peaks					
Catalyst -	T_1	A_1	T_2	A_2	A_{total}		
ZSM-5	154.8	1.08	363.9	0.10	1.18		
HBeta	159.6	1.23	494.5	0.35	1.58		
HUSY	143.3	1.25	509.3	0.36	1.61		
HY	145.7	1.29	512.6	0.41	1.70		

Table 2S. the NH₃-TPD results for various zeolite catalysts.

 $^{\mathrm{a}}$ T_{\mathrm{i}} refers to the temperature at the maximum of desorption peak i.

^b A_i refers to the integral area of desorption peak i, and it means also the concentration of acid site corresponding to the desorption peak i; A_{total} stands for the sum of the concentration of various acid site, i.e., $A_{total} = \sum A_i$.