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Fig. S1 1H-NMR spectrum of 1,4-bis(5-bromothiophen-2-yl)-6-(2-ethylhexyl)-5H-pyrrolo[3,4-

d]pyridazine-5,7(6H)-dione (T-EHPPD-T monomer). 

 

 

 

 

Fig. S2 (A) GPC chromatogram and (B) the corresponding distribution plots of T-EHPPD-T-EHBDT. 
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Fig. S3 Thermogravimetric analysis of the polymer T-EHPPD-T-EHBDT. 
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Fig. S4 Normalized UV-Vis absorption spectra of T-EHPPD-T-EHBDT and ITIC-F thin films. 
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Table S1 Characteristic parameters of the solar cells prepared with different layer thicknesses (D: 

donor, A: acceptor, L: absorber layer thickness). The average solar cell parameters have been 

calculated from the best four devices 

D:A weight ratio L (nm) VOC (V) JSC (mA/cm²) FF PCE (%) 

1:1 

50 ± 5 0.74 ± 0.04 15.6 ± 0.8 0.49 ± 0.03 5.7 ± 0.4 

60 ± 5 0.78 ± 0.04 16.1 ± 0.2 0.58 ± 0.03 7.2 ± 0.4 

90 ± 10 0.78 ± 0.04 16.4 ± 0.7 0.46 ± 0.02 5.9 ± 0.4 

140 ± 10 0.74 ± 0.04 14.5 ± 0.6 0.39 ± 0.02 4.2 ± 0.3 

1:1.5 

50 ± 5 0.75 ± 0.04 16.2 ± 0.8 0.47 ± 0.03 5.7 ± 0.3 

60 ± 5 0.74 ± 0.04 15.7 ± 0.8 0.50 ± 0.03 5.9 ± 0.3 

95 ± 10 0.77 ± 0.04 15.8 ± 0.7 0.45 ± 0.03 5.5 ± 0.4 

140 ± 10 0.78 ± 0.04 12.4 ± 0.6 0.44 ± 0.02 4.1 ± 0.2 
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Fig. S5 Dependence of the JSC on the light intensity. 
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Determination of the SCLC charge carrier mobility of the blend films 

 

In addition to the OFET-based mobility measurements, an analysis of the dark current in the organic 

solar cells was performed to obtain the SCLC charge carrier mobility of the blend films. The 

j-V characteristics used for the analysis are presented in Fig. S6. 

 

 

Fig. S6 j-V characteristics measured in the dark of solar cells with polymer:ITIC-F weight ratios of 1:1 

and 1:1.5. 

 

Since the anode (ZnO/ITIC-F) and cathode (T-EHPPD-T-EHBDT/MnO3) interfaces represent a low 

injection barrier for electrons and holes, respectively, the observed j-V dependence is limited by the 

bimolecular recombination. Due to the low film thickness (L = 60 nm), the transit time of injected 

carriers is presumably shorter than the dielectric relaxation time. Therefore, the current density can 

be described as:1,2 

𝑗 = 2𝜀𝑟𝜀0
(𝑉 − 𝑉𝑏𝑖)
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where (𝜀0) is the vacuum permittivity and 𝜀𝑟 is a relative permittivity taken as 3. The externally applied 

bias voltage (V) is reduced by the built-in voltage (Vbi), which we found to be -0.60 ± 0.02 V in this case. 

𝛽 and 𝛽𝐿 are the bimolecular and Langevin recombination rates, respectively. However, in the case 

when one of the injection barriers is limiting carrier injection, j is not limited by bimolecular 

recombination. Therefore, the observed j-V dependence can be interpreted in terms of the space-

charge limited current (SCLC) model of Murgatroyd and Gill:3,4 
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which is an extended version of the Mott-Gurney law to account for the electric field dependence of 

the mobility (𝜇(𝑉)). In the model, the mobility is represented as a product of zero-field mobility (𝜇0) 

and the exponential term including the parameter 𝛾. In Fig. S7, we show j as a function of externally 

applied bias voltage (V) by red open circles. j is linearly increasing with V below 0.2 V. The 

corresponding slope of the j-V characteristics (dashed blue line and right axis) is approximately 1. In 

contrast, above 0.2 V, j exhibits a rapid increase, which is a typical trap-filling effect. The slope in this 

voltage region reaches a value between 16 and 17 in Fig. S7A (blend ratio = 1:1) and a value between 

10 and 11 in Fig. S7B (blend ratio = 1:1.5). For higher bias, the slope drops towards 2, which is a 

fingerprint of the Mott-Gurney law. Therefore, the model was used to estimate Vbi, 𝜇0 and 𝛾 in the 

bias above 1 V.5 The resulting parameters are presented in Table S2. 

 

Table S2 Parameters obtained based on the above described model 

blend ratio 
Vbi 𝜇0 𝛾 

(V) (cm2/Vs) (m1/2/V1/2) 

1:1 -0.587 2.9 x 10-8 1.4 x 10-3 

1:1.5 -0.602 5.6 x 10-10 2.2 x 10-3 

   

The parameters display a significant variation, which results from the analysis in a relatively narrow 

voltage range. Therefore, we calculated the SCLC mobility in the blend layer at a bias voltage of 1.2 V. 

The corresponding mobility is 2.8 x 10-5 cm2/Vs and 2.7 x 10-5 cm2/Vs for the 1:1 and the 1:1.5 blend, 

respectively. In case of double-injection, the geometric average of mobility √𝜇ℎ𝜇𝑒  is found to be 

1.6 x 10-5 cm2/Vs multiplied by a factor √𝛽 𝛽𝐿⁄ . Regarding the latter, it was found to be a fraction of 

unity in fullerene-based solar cells.6 However, recent kinetic Monte Carlo simulations predict that the 

recombination rate decreases with time.7 Hence, it is significantly higher for non-thermalized injected 

carriers. In our case with reduced layer thickness, the injected carriers are presumably non-

thermalized. Therefore, we assume that the recombination rate is of the order of Langevin type and 

hence the geometric average of the mobility is in the order of 10-5 cm2/Vs. 
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Fig. S7 Hole-only current density as a function of applied bias voltage of the blend films in a double-

logarithmic plot (A: 1:1 blend ratio; B: 1:1.5 blend ratio). Measurements (open red circles) and SCLC 

model (black solid line) obtained with a least-square-method in the range above 1 V. The power slope 

of the measurements is presented with a dashed blue line and the corresponding scale on the right 

axis. 
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