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Fig. S1 "TH-NMR spectrum of 1,4-bis(5-bromothiophen-2-yl)-6-(2-ethylhexyl)-5H-pyrrolo[3,4-
d]pyridazine-5,7(6H)-dione (T-EHPPD-T monomer).
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Fig. S2 (A) GPC chromatogram and (B) the corresponding distribution plots of T-EHPPD-T-EHBDT.
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Fig. S3 Thermogravimetric analysis of the polymer T-EHPPD-T-EHBDT.
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Fig. S4 Normalized UV-Vis absorption spectra of T-EHPPD-T-EHBDT and ITIC-F thin films.



Table S1 Characteristic parameters of the solar cells prepared with different layer thicknesses (D:

donor, A: acceptor, L: absorber layer thickness). The average solar cell parameters have been

calculated from the best four devices

D:A weight ratio L (nm) Voc (V) Jsc (mA/cm?) FF PCE (%)
505 0.74+0.04 15.6+0.8 0.49+£0.03 57+04
6015 0.78 £ 0.04 16.1+0.2 0.58 £0.03 7.2+04
1:1
90+ 10 0.78 £ 0.04 16.4+0.7 0.46 £ 0.02 59+04
140+ 10 0.74 £ 0.04 14.5+0.6 0.39+0.02 42+0.3
505 0.75+0.04 16.2+0.8 0.47 £0.03 5.7+0.3
6015 0.74 £ 0.04 15.7+£0.8 0.50+£0.03 5.9+0.3
1:1.5
95+ 10 0.77 £ 0.04 15.8+0.7 0.45+0.03 55104
140+ 10 0.78 £ 0.04 12.4+0.6 0.44 £ 0.02 41+0.2
e 1:1,0=094
= 1:15 a=0.85
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Fig. S5 Dependence of the Jsc on the light intensity.



Determination of the SCLC charge carrier mobility of the blend films

In addition to the OFET-based mobility measurements, an analysis of the dark current in the organic
solar cells was performed to obtain the SCLC charge carrier mobility of the blend films. The

j-V characteristics used for the analysis are presented in Fig. S6.
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Fig. S6 j-V characteristics measured in the dark of solar cells with polymer:ITIC-F weight ratios of 1:1

and 1:1.5.

Since the anode (ZnO/ITIC-F) and cathode (T-EHPPD-T-EHBDT/MnOs) interfaces represent a low
injection barrier for electrons and holes, respectively, the observed j-V dependence is limited by the
bimolecular recombination. Due to the low film thickness (L = 60 nm), the transit time of injected
carriers is presumably shorter than the dielectric relaxation time. Therefore, the current density can
be described as:'?

. V-V)? |B,

J=288—3 — g Hnbte
where (&) is the vacuum permittivity and &, is a relative permittivity taken as 3. The externally applied
bias voltage (V) is reduced by the built-in voltage (Vui), which we found to be -0.60 + 0.02 V in this case.
B and 3, are the bimolecular and Langevin recombination rates, respectively. However, in the case
when one of the injection barriers is limiting carrier injection, j is not limited by bimolecular
recombination. Therefore, the observed j-V dependence can be interpreted in terms of the space-
charge limited current (SCLC) model of Murgatroyd and Gill:**

9 V = Vp)?

Jj=3¢&¢% Tu(V) p(V) = uoexp| 0.891y
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which is an extended version of the Mott-Gurney law to account for the electric field dependence of
the mobility (1(V)). In the model, the mobility is represented as a product of zero-field mobility ()
and the exponential term including the parameter y. In Fig. S7, we show j as a function of externally
applied bias voltage (V) by red open circles. j is linearly increasing with V below 0.2 V. The
corresponding slope of the j-V characteristics (dashed blue line and right axis) is approximately 1. In
contrast, above 0.2 V, j exhibits a rapid increase, which is a typical trap-filling effect. The slope in this
voltage region reaches a value between 16 and 17 in Fig. S7A (blend ratio = 1:1) and a value between
10 and 11 in Fig. S7B (blend ratio = 1:1.5). For higher bias, the slope drops towards 2, which is a
fingerprint of the Mott-Gurney law. Therefore, the model was used to estimate Vi, iy and y in the

bias above 1 V.> The resulting parameters are presented in Table S2.

Table S2 Parameters obtained based on the above described model

. Vbi Ho 14
blend ratio
(V) (cm?/Vs) (m2/v*72)
1:1 -0.587 2.9x10% 1.4x103
1:1.5 -0.602 5.6 x 10 2.2x 1073

The parameters display a significant variation, which results from the analysis in a relatively narrow
voltage range. Therefore, we calculated the SCLC mobility in the blend layer at a bias voltage of 1.2 V.
The corresponding mobility is 2.8 x 10° cm?/Vs and 2.7 x 10° cm?/Vs for the 1:1 and the 1:1.5 blend,

respectively. In case of double-injection, the geometric average of mobility /unu. is found to be

1.6 x 10”° cm?/V's multiplied by a factor \/[TﬁL Regarding the latter, it was found to be a fraction of
unity in fullerene-based solar cells.® However, recent kinetic Monte Carlo simulations predict that the
recombination rate decreases with time.” Hence, it is significantly higher for non-thermalized injected
carriers. In our case with reduced layer thickness, the injected carriers are presumably non-
thermalized. Therefore, we assume that the recombination rate is of the order of Langevin type and

hence the geometric average of the mobility is in the order of 10° cm?/Vs.
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Fig. S7 Hole-only current density as a function of applied bias voltage of the blend films in a double-
logarithmic plot (A: 1:1 blend ratio; B: 1:1.5 blend ratio). Measurements (open red circles) and SCLC
model (black solid line) obtained with a least-square-method in the range above 1 V. The power slope
of the measurements is presented with a dashed blue line and the corresponding scale on the right

axis.
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