Supporting Information (SI)

Solid Solution $ZnW_{1-x}Mo_xO_4$ for the Enhanced Photocatalytic H₂

Evolution

Liang Tang^{*a*,*b*}, Min Zhu^{*a*}, Wenqian Chen^{*a*,*c**}, Suwen Tang^{*a*}, Yuan Feng^{*a*}, Peng Wang

^{*a*}, Xiaonan Liu^{*a*}, Mawlin Foo^{*d*}, Minghong Wu^{*a,b**}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai

200444, PR China

^b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of

Education, Shanghai 200444, PR China

^c Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road,
 Shanghai 201800, PR China

^d Department of Chemistry, National University of Singapore, 117543, Singapore

* Corresponding author. E-mail addresses: <u>wenqianchen@shu.edu.cn</u> (W. Q. Chen), <u>mhwu@shu.edu.cn</u> (M. H. Wu)

Fig. S1 Lattice parameter of different $ZnW_{1-x}Mo_xO_4$ solid solutions.

Fig. S2 SEM images (a, b, c), SEM mapping (d, e, f, g) and SEM-EDS (h) of $ZnW_{0.6}Mo_{0.4}O_4$.

Fig. S3 XRD patterns of $ZnW_{1-x}Mo_xO_4/CdS$ heterojunctions with 10 mol% CdS and pure CdS.

Fig. S4 UV-vis spectra of $ZnW_{1-x}Mo_xO_4/CdS$.

Fig. S5 Mott-Schottky plots of $ZnW_{1-x}Mo_xO_4$ with 1000 Hz frequencies in a 0.5M Na_2SO_4 solution.

Fig. S6 XPS of $ZnW_{1-x}Mo_xO_4$ (*x* = 5, 20, 40%) of Zn (a) and O (b).

Fig. S7 (a) Hydrogen evolution in 3 hours of $ZnW_{1-x}Mo_xO_4/CdS/Pt$. (b) HER activity of $ZnW_{1-x}Mo_xO_4/CdS/Pt$.

Table	S1 .	Refined	structural	parameters	and	reliability	factors	for	lab	XRD	data	for
ZnW_{1}	_ _x Mc	$O_x O_4 (x =$	0.4) measured	ured at 297	K.							

Atom	Coordinates			_ Occupancy	Uiso / Ų	site
	x	У	Z			
Zn	0.50000	0.68330	0.25000	1.000	0.028	2f
W	0.00000	0.18230	0.25000	0.595	0.011 ^[a]	2e
Мо	0.00000	0.18230	0.25000	0.405	0.011 ^[a]	2e
01	0.25470	0.37720	0.40050	1.000	0.054	4g
02	0.21710	0.89550	0.43600	1.000	0.031	4g

^[a] Atomic displacement parameters for cations were assumed to be the same.

Samulas	E _{FB}	Slope	Straight Line fit	ND
Samples	(V)	(cm ⁴ F ⁻² V ⁻¹ 10 ⁻⁸)	(R ²)	(cm ⁻³)
ZnWO ₄	-0.520	84.31	0.99924	1.0075*1019
ZnW _{0.9} Mo _{0.1} O ₄	-0.622	14.73	0.99526	5.7664*10 ¹⁹
ZnW _{0.8} Mo _{0.2} O ₄	-0.526	16.61	0.99778	5.1138*10 ¹⁹
ZnW _{0.7} Mo _{0.3} O ₄	-0.587	19.45	0.99714	4.3671*1019
ZnW _{0.6} Mo _{0.4} O ₄	-0.680	12.23	0.99868	6.9452*10 ¹⁹
ZnW _{0.4} Mo _{0.6} O ₄	-0.651	14.90	0.99526	5.7007*10 ¹⁹
ZnW _{0.2} Mo _{0.8} O ₄	-0.683	15.06	0.99569	5.6401*10 ¹⁹

Table S2. Carrier density calculated from Mott-Schottky plots in Figure S5.

Binding	W	W	W	M0 ⁶⁺	M0 ⁵⁺	M0 ⁶⁺	Mo ⁵⁺
Energy(eV)	5p _{3/2}	4f _{5/2}	$4f_{7/2}$	$3d_{3/2}$	$3d_{3/2}$	3d _{5/2}	3d _{5/2}
ZnW _{0.95} Mo _{0.05} O ₄	40.87	37.27	35.12	235.44	234.14	232.29	230.99
ZnW _{0.8} Mo _{0.2} O ₄	41.01	37.39	35.24	235.49	234.19	232.34	231.04
ZnW _{0.6} Mo _{0.4} O ₄	40.82	37.35	35.20	235.43	234.13	232.28	230.98

Table S3. Binding Energies for Mo3d and W4d Core Lines of the Products.

Table S4. Calculated surface area from BET test.

Samples	BET surface area (m²/g)	Mean pore width (nm)	Pore volume (cm ³ /g)
$ZnWO_4$	22.4325	17.9857	0.0964
$ZnW_{0.9}Mo_{0.1}O_4$	24.0332	17.7196	0.1521
$ZnW_{0.8}Mo_{0.2}O_4$	27.7555	16.0345	0.1897
$ZnW_{0.6}Mo_{0.4}O_4$	28.0925	14.0462	0.1070
$ZnW_{0.4}Mo_{0.6}O_4$	27.0959	15.8311	0.1496
ZnWO ₄ /CdS	27.8417	13.5459	0.1031
ZnW _{0.8} Mo _{0.2} O ₄ /CdS	31.3771	17.8342	0.2085
ZnW _{0.6} Mo _{0.4} O ₄ /CdS	33.7774	13.9542	0.1424

Table S5. Parameters (elements) of the EIS fitting using Rs-Rct | CPE equivalent circuit.

Sec	R _s	R _{ct}
Samples	(Ω)	(kΩ)
ZnWO ₄	19.78	4.73*10 ⁴
$ZnW_{0.95}Mo_{0.05}O_4$	17.35	412.64
$ZnW_{0.9}Mo_{0.1}O_4$	16.10	159.41
$ZnW_{0.8}Mo_{0.2}O_4$	20.3	2.02*10 ³
$ZnW_{0.7}Mo_{0.3}O_4$	16.86	276.07
$ZnW_{0.6}Mo_{0.4}O_4$	13.18	67.015
ZnWO ₄ /CdS	27.97	42.25
$ZnW_{0.9}Mo_{0.1}O_4/CdS$	14.51	43.328
ZnW _{0.8} Mo _{0.2} O ₄ /CdS	32.62	41.201
ZnW _{0.6} Mo _{0.4} O ₄ /CdS	17.78	42.547