Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

A Robust Heterogeneous Co-MOFs Catalyst in Azide-alkynes Cycloaddition and Friedel-Crafts Reactions as well as Hydrosilylation of Alkynes

Tai-Xue Wu,^{a‡} Jun-Song Jia,^{a‡} Wei Luo,^a He-Dong Bian,^{ab*} Hai-Tao Tang,^{a*} Ying-Ming Pan,^a Fu-Ping Huang^{a*}

^a State Key State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin 541004, PR China. E-mail: <u>huangfp2010@163.com</u> (F.-P. Huang); <u>httang@gxnu.edu.cn</u> (H.-T. Tang).

^b School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Key Laboratory of Chemistry and Engineering of Forest Products, Nanning, 530008, P. R. China. E-mail: <u>gxunchem@163.com</u>(H.-D. Bian)

Section 1. Supporting information for 1-2

Crystal structure determination.

Single crystals of 1-2 were chosen under an optical microscope and mounted on a glass fiber for data collection. All reflection data were collected on an Agilent Supernova diffractometer (Mo, λ = 0.71073 Å) at room temperature. The data integration and reduction were processed using CrysAlisPro software. The structures were solved by direct methods using ShelXS and refined using a fullmatrix least-squares technique within ShelXL 2015 and OLEX-II Program.¹ All non-hydrogen atoms were refined anisotropically until convergence is reached. Hydrogen atoms attached to the organic moieties present in all compounds are either located from the difference Fourier map or stereochemically fixed. Guest molecules in 1 and 2 are significantly disordered and could not be modeled properly due to the lack of well define atomic, positions, and PLATON/SQUEEZE was employed to remove these electron densities. The Squeeze procedure is a widely used and accepted method that corrects diffraction data for structures affected by the presence of heavily disordered solvent. However, the use of Squeeze does not impact the framework atoms. Summary of crystallographic data and details of data collection for **1** and **2** are given in Table S1. Selected bond lengths and angles for **1-2** are collected in Table S2. Crystallographic data for the structural analyses has been deposited at the Cambridge Crystallo-graphic Data Centre (CCDC reference numbers: (1977363-1977364).

Complex	1	2
Empirical formula	$C_{16}H_{13}Co_2N_5O_6$	$C_{16}H_{13}Co_2N_5O_6$
Formula weight (M)	489.16	489.16
Crystal system	Hexagonal	Hexagonal
Space group	P6 ₃	P6 ₃
a (Å)	21.6539 (9)	21.6328 (9)
b (Å)		_
c (Å)	8.3373 (3)	8.3468 (4)
α (°)	90.00	90.00
β (°)	90.00	90.00
γ (°)	120.00	120.00
V/(Å3)	3385.5 (2)	3382.8 (3)
Ζ	6	6
Dc(Mg cm-3)	1.434	1.456
F(000)	1464.0	1492
θ range for data collection (°)	3.9–28.3°	3.8-28.3
Reflections collected /	20859/4411	20766/4521
unique	[R(int) =0.046]	[R(int) =0.058]
Goodness-of-fit on F2	1.052	0.97
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0241	R1 = 0.0327
	$\omega R2 = 0.0563$	$\omega R2 = 0.0631$
R indices (all data)	R1 = 0.0284	R1 = 0.0416

Table S1. Crystallographi	c data and structure refineme	nt parameters for 1-2.

 $\omega R2 = 0.0587$

		8 () 8 ()	
Complex 1			
Co1—O1	2.119 (3)	Co2—O3	2.012 (3)
Co1—O3	2.003 (3)	Co2—O6	2.142 (3)
Co1—O2A	2.371 (3)	Co2—O4	2.104 (3)
Co1—O5A	2.015 (3)	Co2—O2A	2.268 (3)
Co1—N3	2.114 (3)	Co2—N4	2.129 (3)
Co1—N5B	2.112 (3)	Co2—N1C	2.136 (3)
01—Co1— 02A	90.04 (10)	O3—Co2—O6	162.39 (11)
O3—Co1—O1	80.16 (10)	O3—Co2—O4	92.49 (11)
O3—Co1— O2A	76.39 (10)	O3—Co2—O2A	78.65 (10)
O3—Co1— O5A	162.87 (11)	O3—Co2—N4	88.35 (11)
O3—Co1—N3	90.35 (11)	O3—Co2—N1C	98.68 (12)
O3—Co1— N5B	97.74 (12)	O6—Co2—O2A	85.40 (10)
O5A—Co1— O1	87.00 (11)	O4—Co2—O6	80.24 (12)
O5A—Co1— O2A	92.45 (10)	O4—Co2—O2A	90.94 (11)

Table S2. Selected bond lengths (Å) and angles (°) for 1-2

O5A—Co1— N3	101.42 (13)	O4—Co2—N4	176.24 (12)
O5A—Co1— N5B	93.49 (12)	O4—Co2—N1C	89.81 (13)
N3—Co1—O1	169.62 (11)	N4—Co2—O6	97.93 (12)
N3—Co1— O2A	83.60 (10)	N4—Co2—O2A	85.63 (11)
N5B—Co1— O1	89.85 (12)	N4—Co2—N1C	93.69 (12)
N5B—Co1— O2A	174.05 (11)	N1C—Co2—O6	97.33 (12)
N5B—Co1— N3	95.62 (12)	N1C—Co2—O2A	177.26 (11)
Complex 2			
Co1—O1	2.121 (3)	Co2—O2A	2.269 (3)
Co1—O2A	2.372 (3)	Co2—O3	2.009 (3)
Co1—O3	2.006 (3)	Co2—O4	2.092 (3)
Co1—O5A	2.012 (3)	Co2—O6	2.130 (5)
Co1—N3	2.109 (4)	Co2—N1C	2.135 (4)
Co1—N5B	2.118 (4)	Co2—N4	2.128 (4)
01—Co1— 02A	89.92 (12)	O3—Co2—O2A	78.86 (12)
O3—Co1—O1	80.08 (12)	O3—Co2—O4	92.38 (13)

O3—Co1— O2A	76.47 (12)	O3—Co2—O6	162.73 (15)
O3—Co1— O5A	162.82 (14)	O3—Co2—N1C	98.52 (14)
O3—Co1—N3	90.52 (13)	O3—Co2—N4	88.56 (13)
O3—Co1— N5B	97.62 (14)	O4—Co2—O2A	90.81 (14)
05A—Co1— 01	87.04 (13)	O4—Co2—O6	80.25 (18)
O5A—Co1— O2A	92.30 (12)	O4—Co2—N1C	90.31 (15)
O5A—Co1— N3	101.25 (15)	O4—Co2—N4	175.93 (15)
O5A—Co1— N5B	93.68 (15)	O6—Co2—O2A	85.61 (15)
N3—Co1—O1	169.63 (13)	O6—Co2—N1C	97.11 (17)
N3—Co1— O2A	83.58 (13)	N1C—Co2—O2A	177.19 (14)
N3—Co1— N5B	95.60 (15)	N4—Co2—O2A	85.49 (13)
N5B—Co1— O1	90.02 (14)	N4—Co2—O6	97.76 (18)
N5B—Co1— O2A	174.01 (14)	N4—Co2—N1C	93.47 (14)

Figure S1. (a) the structure of 1 showing the 1D [Co(L-mac)] chain; (b) the enantiomeric [Co(L-mac)] and [Co(D-mac)] chain in 1 and 2, respectively.

Figure S2. the 1D [Co(4,4'-bpt)] chain and its schematic description.

Figure S3. the Thermogravimetric analyses (TGA) curves (a-b, e) and the FTIR spectra (c-d, f) of **1-2** recorded in KBr palates.

Figure S4. the Solid-state CD spectra of 1 (red line) and 2 (blue line).

Figure S5. The XRD patterns of **2** at different temperatures (a), after immersing in different solvents (b) and different acid/base condition (c).

Figure S6. N_2 adsorption-desorption isotherms at 77 K(left) and porous size distribution (PSD) curve calculated from N_2 adsorption isotherm using the HorvathKawazoe model(right).

Section 2. Supporting information for Azide-alkynes Cycloaddition

Reactions Catalyzed by 1

Entry	(°C) T	t/h	Isolated yield of 5+5'
1	60	6	68
2	50	6	57
3	70	6	67
4	80	6	68
5	60	5	64
6	60	7	68

Table S3. Screening of temperatures ^a

^{*a*} Reaction conditions: benzyl bromide (1 mmol), NaN₃ (1.5 mmol), H₂O (2 mL), Co-MOF (0.02 mmol), *p*-methyl phenylacetylene (1.5 mmol) and reaction 6 h.

On the basis of the above observation, the activity of **1** was first examined in which the azidation of benzyl bromine with NaN₃ in aqueous solution was chosen as a model reaction to optimize the reaction conditions. As show in Table S3, we screened the reaction temperature with (bromomethyl) benzene and 1-ethynyl-4-methylbenzene as substrates. The performance of **1** in the model azidation experiment exhibited that there was no significant correlation with temperature in a small range. For example, 1,2,3triazole was obtained in an isolated yield of 68 % at 60 °C and 80 °C. (entries 1 and 4, Table S3). Besides, a 57 % conversion was obtained when the action temperature down to 50 °C. This suggests that the yield decreased slightly when the temperature was lowered (entry 2, Table S3); What is more, the yield did not increase significantly when the temperature was increased (entries 3-4, Table S3). The reaction temperature was controlled to 60 $^{\circ}$ C, we shortened the reaction time to 5 h, and the yield was 64% (entries 5, Table S3). When the reaction time was extended to 7 hours, the yield was 68% (entries 6, Table S3). Our optimized condition is to react at 60 $^{\circ}$ C for 6 h.

1-(4-(*tert***-butyl)benzyl)-4-phenyl-1***H***-1,2,3-triazole.** White solid, 74% yield, mp 161-163 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.75 (m, 2H), 7.66 (s, 1H), 7.44-7.34 (m, 4H), 7.33-7.27 (m, 1H), 7.27-7.22 (2, H), 5.53 (s, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.86, 148.07, 131.60, 130.55, 128.73, 128.05, 127.84, 126.02, 125.64, 119.45, 53.88, 34.59, 31.20. HRMS (ESI) *m/z* Calculated for C₁₉H₂₁N₃ [M+H]⁺ 292.1808, found: 292.1812.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

4-(4-bromophenyl)-1-(4-(*tert***-butyl)benzyl)-1***H***-1,2,3-triazole. White solid, 77% yield, mp 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.62 (m, 3H), 7.56-7.48 (m, 2H), 7.44-7.36 (m, 2H), 7.28-7.21 (m, 2H), 5.54 (s, 2H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.05, 147.08, 131.91, 131.41, 129.53, 127.93, 127.21, 126.12, 121.98, 129.51, 54.02, 34.65, 31.23. HRMS (ESI)** *m/z* **Calculated for C₁₉H₂₀BrN₃ [M+H]⁺ 370.0913, found: 370.0916.**

Spectrum of ¹³C NMR

1-benzyl-4-(4-(*tert***-butyl)phenyl)-1***H***-1,2,3-triazole.** White solid, 70% yield, mp 115-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.70 (m, 2H), 7.64 (s, 1H), 7.46-7.32 (m, 5H), 7.32-7.26 (m, 2H), 5.56 (s, 2H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.20, 148.15, 134.75, 129.05, 128.65, 127.92, 127.65, 125.66, 125.37, 119.22, 54.09, 34.58, 31.22. HRMS (ESI) *m/z* Calculated for C₁₉H₂₁N₃ [M+H]⁺ 292.1808, found: 292.1812.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

1-benzyl-4-(*p*-tolyl)-1*H*-1,2,3-triazole. White solid, 68% yield, mp 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.65 (m, 2H), 7.62 (s, 1H), 7.42-7.33 (m, 3H), 7.33-7.27 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.55 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.22, 137.94, 134.69, 129.42, 129.07, 128.68, 127.99, 127.64, 125.54, 119.12, 54.13, 21.22. HRMS (ESI) *m/z* Calculated for C₁₆H₁₅N₃ [M+H]⁺ 250.1339, found: 250.1339.

Spectrum of ¹³C NMR

1-benzyl-4-(4-fluorophenyl)-1*H***-1,2,3-triazole.** White solid, 71% yield, mp 111-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.70 (m, 2H), 7.65 (s, 1H), 7.40-7.31 (m, 3H), 7.31-7.24 (m, 2H), 7.09-7.00 (m, 2H), 5.53 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.69, 161.23, 147.14, 134.51, 129.01, 128.65, 127.90, 127.27 (d, *J*=8.1 Hz), 126.67 (d, *J*=3.1 Hz), 119.28, 115.61 (d, *J*=21.6Hz), 54.05. ¹⁹F NMR (400 MHz, CDCl₃) δ -113.49. HRMS (ESI) *m/z* Calculated for C₁₅H₁₂FN₃ [M+H]⁺ 254.1088, found: 254.1091.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

Spectrum of ¹⁹F NMR

1-(4-(*tert***-butyl)benzyl)-4-(3-methoxyphenyl)-1***H***-1,2,3-triazole. Light yellow oil, 75% isolated yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.46-7.36 (m, 3H), 7.33-7.22 (m, 4H), 6.90-6.81 (m, 1H), 5.52 (s, 2H), 3.84 (s, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 159.93, 151.86, 147.92, 131.85, 131.57, 129.74, 127.82, 126.01, 119.65, 118.03, 114.18, 110.62, 55.28, 53.87, 34.58, 31.19. HRMS (ESI)** *m/z* **Calculated for C₁₆H₂₄N₃O [M+H]⁺ 322.1914, found: 322.1920.**

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

Figure S7. The products of azide-alkynes cycloaddition reaction

Section 3. Supporting information for Friedel–Crafts alkylation reaction of *trans-\beta*-Nitrostyrenes and Indoles Catalyzed by 1

Synthesis of the substrates of Friedel–Crafts alkylation reaction of *trans-\beta*-nitrostyrenes and indoles.

(*E*)-1-fluoro-4-(2-nitrovinyl)benzene (S1) and (*E*)-1-chloro-2-(2-nitrovinyl) benzene (S2) was prepared according to the literature.² Dissolve 4-fluorobenzaldehyde (2 mmol, 256 mg), NH₄OAc (2 mmol, 155 mg) in 1 mL glacial acetic acid, add CH₃NO₂ (5 mmol, 610 mg) and react at 100 °C for 3 h. After the reaction was completed, the solvent was evaporated under reduced pressure. The crude product was extracted with 30 mL of water and CH₂Cl₂ (2 × 30 mL). The organic layers were combined, and the organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, and the solvent was evaporated. The product was recrystallized from hydro ethanol 2-3 times to obtain the product with a yield of 95 %.

Table S4. Screening of solvent and reaction time ^a

entry	Solvent	t/ h	Isolated yield/%
1	DCM	24	64
2	Toulene	24	52
3	DCM	12	43
4	DCM	36	64
5	DCM	48	63

^a Reaction conditions: *trans-β*-nitrostyrenes (0.2 mmol), indoles (0.3 mmol), solvent (1 mL), Co-MOF (0.01 mmol), 35 °C.

As shown in Table S4, when the reaction was carried out in the presence of **1** (0.01 mmol) at 35 °C in DCM under air atmosphere for 24 h, an isolated yield of 64 % was obtained (entry 1, Table S4). When toluene is used as the solvent, the yield drops to 52 % (entry 2, Table S4). Subsequently, with DCM as the solvent, we screened the reaction time. It seems that the longer reaction time (48 h, entry 5, Table S4) were not helpful

for the product generate. For instance, when the reaction time was reduced to 12 h, the yield was 43 % (entry 3, Table S4). The amount of product obtained did not increase significantly when the reaction time was extended (entries 4 and 5, Table S4).

(*E*)-1-fluoro-4-(2-nitrovinyl)benzene.³ 87% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J*=13.7 Hz, 1H), 7.59-7.51 (m, 3H), 7.19-7.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.19, 163.65, 137.81, 136.84, 131.26 (d, *J*=8.8 Hz), 126.28 (d, *J*=3.4 Hz), 116.89, 116.67. ¹⁹F NMR (400 MHz, CDCl₃) δ -105.75.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

Spectrum of ¹⁹F NMR

(*E*)-1-chloro-2-(2-nitrovinyl)benzene.² 84% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J*=13.7 Hz, 1H), 7.62-7.56 (m, 2H), 7.52-7.47 (m, 1H), 7.46-7.40 (m, 1H), 7.37-7.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.81, 136.02, 135.09, 132.81, 130.73, 128.57, 128.50, 127.45.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

3-(2-nitro-1-phenylethyl)-1*H***-indole.** Colorless oil, 43% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.45 (d, *J*=8.0 Hz, 1H), 7.39-7.29 (m, 5H), 7.29-7.24 (m, 1H), 7.23-7.17 (m, 1H), 7.11-7.06 (m, 1H), 7.04 (d, *J*=2.1 Hz, 1H) 5.20 (t, *J*=8.0 Hz, 1H), 5.11-5.04 (dd, *J*=12.5, 7.6 Hz, 1H), 4.95 (dd, *J*=12.5, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.14, 136.46, 128.90, 127.74, 127.55, 126.08, 122.69, 121.56, 119.95, 118.91, 114.45, 111.32, 79.50, 41.52. HRMS (ESI) *m/z* Calculated for C₁₆H₁₄N₂O₂ [M+H]⁺ 267.1228, found: 267.1131.

Spectrum of ¹³C NMR

1-methyl-3-(2-nitro-1-phenylethyl)-1*H***-indole.** Colorless oil, 64% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.44 (m, 1H), 7.37-7.21 (m, 7H), 7.11-7.05 (m, 1H), 6.86 (s, 1H), 5.19 (t, *J*=8.0 Hz, 1H), 5.06 (dd, *J*=12.5, 7.5 Hz, 1H), 4.94 (dd, *J*=12.5, 8.5 Hz, 1H), 3.74 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.33, 137.25, 128.88, 127.70, 127.48, 126.50, 126.33, 122.19, 119.42, 118.94, 112.76, 109.48, 79.52, 41.49, 32.81. HRMS (ESI) *m/z* Calculated for C₁₇H₁₆N₂O₂ [M+H]⁺ 281.1285, found: 281.1288.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

5-methoxy-2-methyl-3-(2-nitro-1-phenylethyl)-1*H***-indole.** Colorless oil, 70% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.33-7.24 (m, 4H), 7.22-7.17 (m, 1H), 7.08 (d, *J* = 8.7 Hz, 1H), 6.79-6.70 (m, 2H), 5.21-5.10 (m, 2H), 5.10-5.00 (m, 1H), 3.73 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.76, 139.31, 133.73, 130.46, 128.69, 127.29, 127.19, 126.99, 111.20, 110.30, 108.44, 101.42, 78.32, 55.81, 40.24, 11.95. HRMS (ESI) *m/z* Calculated for C₁₈H₁₈N₂O₃ [M+H]⁺ 311.1390, found: 311.1395.

Spectrum of ¹³C NMR Spectrum of ¹H NMR

3-(1-(4-fluorophenyl)-2-nitroethyl)-1-methyl-1*H***-indole.** Colorless oil, 40% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.0 Hz, 1H), 7.34-7.28 (m, 3H), 7.27-7.21 (m, 1H), 7.12-7.05 (m, 1H), 7.05-6.97 (m, 2H), 6.85 (s, 1H), 5.17 (t, *J* = 7.9 Hz, 1H), 5.04 (dd, *J* = 12.4, 7.3 Hz, 1H), 4.90 (dd, *J* = 12.4, 8.7 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.25, 160.80, 137.28, 135.07 (d, *J*=3.4 Hz), 129.30 (d, *J*=8.1 Hz), 126.34, 126.17, 122.33, 119.52, 118.87, 115.90, 115.68, 112.57, 109.55, 79.53, 40.82, 32.85. ¹⁹F NMR (400 MHz, CDCl₃) δ -114.87. HRMS (ESI) *m/z* Calculated for C₁₇H₁₅FN₂O₂ [M+H]⁺ 299.1190, found: 299.1193.

Spectrum of ¹H NMR

Spectrum of ¹⁹F NMR

3-(1-(2-chlorophenyl)-2-nitroethyl)-5-methoxy-2-methyl-1*H***-indole.** Colorless oil, 68% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.53 (dd, *J* = 7.4, 2.0 Hz, 1H), 7.40 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.28-7.16 (m, 2H), 7.10 (d, *J* = 8.7 Hz, 1H), 6.90 (d, *J* = 2.2 Hz, 1H), 6.77 (dd, *J* = 8.7, 2.3 Hz, 1H), 5.47 (dd, *J* = 9.2, 6.8 Hz, 1H), 5.20-5.06 (m, 2H), 3.80 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.82, 136.45, 134.44, 134.00, 130.43, 130.33, 128.58, 128.37, 127.47, 126.89, 111.29, 110.19, 106.47, 101.39, 76.91, 55.85, 38.30, 12.23. HRMS (ESI) *m/z* Calculated for C₁₈H₁₇ClN₂O₃ [M+H]⁺ 345.1000, found: 345.1000.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

3-(1-(2-chlorophenyl)-2-nitroethyl)-6-methoxy-1*H***-indole.** Colorless oil, 51% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.45-7.40 (m, 1H), 7.32-7.24 (m, 1H), 7.22-7.11 (m, 3H), 6.98 (d, *J* = 1.9 Hz, 1H), 6.81 (d, *J* = 1.9 Hz, 1H), 6.74 (dd, *J* = 8.7, 2.1 Hz, 1H), 5.69 (t, *J* = 7.8 Hz, 1H), 5.01-4.88 (m, 2H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.86, 137.25, 136.46, 133.74, 130.05, 128.96, 128.79, 127.25, 120.62, 120.47, 119.48, 113.20, 110.01, 94.67, 77.69, 55.57, 37.91. HRMS (ESI) *m/z* Calculated for C₁₇H₁₅ClN₂O₃ [M+H]⁺ 331.0844, found: 331.0848.

Spectrum of ¹³C NMR

3-(1-(2-chlorophenyl)-2-nitroethyl)-1-methyl-1*H***-indole.** Colorless oil, 63% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.40 (m, 2H), 7.32-7.27 (m, 1H), 7.27-7.14 (m, 4H), 7.12-7.04 (m, 1H), 6.94 (s, 1H), 5.74 (t, *J* = 7.9 Hz, 1H), 5.03-4.92 (m, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.23, 136.62, 133.78, 130.09, 128.84, 128.72, 127.21, 126.58, 122.25, 119.47, 118.96, 111.48, 109.46, 77.73, 37.85, 32.84. HRMS (ESI) *m/z* Calculated for C₁₇H₁₅ClN₂O₂ [M+H]⁺ 315.0895, found: 315.0894.

Spectrum of ¹H NMR

Spectrum of ¹³C NMR

7-methyl-3-(2-nitro-1-phenylethyl)-1*H***-indole.** Colorless oil, 45% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.35-7.22 (m, 6H), 7.01-6.96 (m, 3H), 5.18 (t, *J* = 8.0 Hz, 1H), 5.06 (dd, *J* = 12.4, 7.6 Hz, 1H), 4.94 (dd, *J* = 12.4, 8.4 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.19, 136.05, 128.87, 127.73, 127.50, 125.61, 123.18, 121.27, 120.57, 120.17, 116.62, 114.90, 79.49, 41.62, 16.51. HRMS (ESI) *m/z* Calculated for C₁₇H₁₆N₂O₂ [M+H]⁺ 281.1285, found: 281.1288.

Spectrum of ¹³C NMR

Figure S8. The substrates and products of Friedel-Crafts reaction

Section 4. Supporting information for Selective hydrosilylation of alkynes reaction catalyzed by 1

entry	solvent	Т/ °С	Isolated yield of 11-15 /% ^b
1	THF	50	52
2	CH ₃ CN	50	43
3	Et ₂ O	50	47
4	Toluene	50	20
5	THF	60	50
6	THF	70	52

Table S5. Screening of solvent and temperatures ^a

^a Reaction conditions: phenylacetylene (1 mmol), PhSiH₃ (2 mmol), NaBHEt₃ (6 mol
%), Co-MOF (0.02 mmol), 6 h.

The reaction yield was is not high when using THF as a solvent, as mentioned previously, we first screened the solvents and found that the commonly used solvents, acetonitrile, ether and toluene did not greatly improve the reaction yield (20 %-47 %, entries 2-4, Table S5). Subsequently, we screened the reaction temperature. Unfortunately, and the hydrosilylation yield also did not increase significantly when the reaction temperature was changed (entries 5 and 6, Table S5).

Figure S9. The products of hydrosilylation of alkynes reaction The standard ¹H NMR of compounds **11-15** are obtained from the literature.⁴⁻⁸

References

- 1 (a) G. M. Sheldrick, SADABS 2.05; University Göttingen; Göttingen, Germany; (b)
 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112; (c)
 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3.
- 2 R. G. Andrew, R. A. Raphael Tetrahedron, 1987, 43, 4803.
- 3 A. Zhao, Q. Jiang, J. Jia, B. Xu, Y. Liu, M. Zhang, Q. Liu, W. Luo and C. Guo *Tetrahedron Lett.*, 2016, **57**, 80.
- 4 J. Guo, X. Shen, Z. Lu. Angew. Chem. Int. Ed., 2016, 52, 615-618.
- 5 C. Wu, W. J. Teo and S. Ge. ACS Catal., 2018, 8, 5896-5900.
- 6 W. J. Teo, C. Wang, Y. W. Tan and S. Ge. Angew. Chem. Int. Ed., 2017, 56, 4328-4332.
- 7 M. D. Greenhalgh, D. J. Frank and S. P. Thomas. *Adv. Synth. Catal.*, **2014**, *356*, 584-590.
- 8 J. Guo, Z. Lu., Angew. Chem. Int. Ed., 2016, 55, 10835-10838.