Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

A Serendipitous Isolation of Cocrystalized Platinum-Tin Complexes:

Synthesis, Structure and Theoretical Exploration

Rohit Singh Chauhan*a, Saurabh Kumar Singh*b, Adish Tyagi^c, James A. Golen^d, Arnold L.

Rheingold

^aDepartment of Chemistry, K. J. Somaiya College of Science and Commerce, Mumbai- 400

077

Email: rohit.chauhan@somaiya.edu

^bDepartment of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285,

Sangareddy, Telangana, India

Email: sksingh@chy.iith.ac.in

^cChemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, INDIA

^dDepartment of Chemistry and Biochemistry, University of California, San Diego, La Jolla,

California 92093-0358, United States.

Figure S1. DFT optimized geometries a) [$\{Pt(\kappa_2-SeC_5H_4N)(dppp)\}$]; b) [$\{(Me_2Sn)_5O_3Cl_5\}$];c) [$\{(Me_2Sn)_5O_3Cl_5\}$]. The labelling of atoms are for comparing NPA charges and second order perturbation analysis donor-acceptor interaction analysis. Color code: Pt (pink), Sn (tangerine), P(light brown), Se (light yellow), Cl (green), O (red), N(blue), C (grey) and H (white).

Table S1. NBO computed NPA charges on crystal structure and DFT optimized geometry of $[{Pt(\kappa_2-SeC_5H_4N)(dppp)}]$ unit of complex 2a. Pt and atoms in first coordination sphere were kept in bold. (For numbering see Figure S1)

Atoms	[{Pt(k ₂ -SeC ₅ H ₄ N)(dppp)}]	[{Pt(k ₂ -SeC ₅ H ₄ N)(dppp)}]
	(X-ray Crystal Structure)	(DFT Optimized Geometry)
Pt 1	0.13772	0.14654
Se 2	-0.06074	-0.05301
P 3	1.10344	1.09997
P 4	1.02434	1.03107
N 5	-0.55618	-0.57108
C 6	0.07807	0.07738
C 7	-0.23095	-0.27305
H 8	0.21661	0.26914
C 9	-0.09103	-0.16336
H 10	0.20361	0.26198
C 11	-0.23445	-0.28436
H 12	0.20663	0.26224
C 13	0.14653	0.08273
H 14	0.18636	0.24367
C 15	-0.36143	-0.36941
C 16	-0.18422	-0.22953
H 17	0.20419	0.25609
C 18	-0.15634	-0.21946
H 19	0.19962	0.25507
C 20	-0.15209	-0.20777
H 21	0.19739	0.25470
C 22	-0.16892	-0.21991
H 23	0.20041	0.25442
C 24	-0.15973	-0.21700
H 25	0.19758	0.25541
C 26	-0.36986	-0.37056
C 27	-0.16269	-0.21995
H 28	0.20324	0.26372
C 29	-0.16504	-0.22762
H 30	0.20048	0.25531
C 31	-0.14855	-0.21227
H 32	0.19756	0.25403
C 33	-0.17425	-0.21971
H 34	0.20020	0.25404
0.35	-0.1/6/9	-0.22022
H 36	0.19196	0.241/5
C 37	-0.69499	-0.75848
H 38	0.24546	0.284/3
H 39	0.24/14	0.28296
C 40	-0.38058	-0.4 / /44
H 41	0.21276	0.25149
H 42	0.22988	0.2/222
C 45	-0.07133	-0.74775
п 44 Ц 45	0.23038	0.2/004
П 43 С 46	0.240/3	0.2/901
C 40	-0.57705	-0.3/940
U4/ H19	0.10417	0.21030
C 40	-0.16205	0.23725
U 49 H 50	0 100/2	0.22210
C 51	_0.15755	_0 20633
H 52	0.19829	0.25417

C 53	-0.16248	-0.22494
Н 54	0.20108	0.25510
C 55	-0.17921	-0.22945
Н 56	0.19685	0.24654
C 57	-0.37910	-0.37284
C 58	-0.17235	-0.22668
Н 59	0.20059	0.25967
C 60	-0.16371	-0.22282
H 61	0.20032	0.25658
C 62	-0.16555	-0.21388
Н 63	0.20095	0.25657
C 64	-0.16341	-0.22074
H 65	0.20313	0.25681
C 66	-0.16855	-0.22575
Н 67	0.19685	0.25206

Table S2. NBO computed NPA charges on DFT optimized geometry of $[{Pt(\kappa_2-SeC_5H_4N)(dppp)}]$ unit of complex **2a** and their isolated fragments ${Pt(dppp)}$ and ${SeC_5H_4N}$. Pt and atoms in first coordination sphere were kept in bold.

$[{Pt(\kappa_2-SeC_5H_4N)(dppp)}]^+$	${Pt(dppp)}^{2+}$	${SeC_5H_4N}$	
Pt 1 0.14654	Pt 1 0.13767	Se 1 -0.51484	
Se 2 -0.05301	P 2 1.21965	N 2 -0.51253	
P 3 1.09997	P 3 1.21039	C 3 0.04373	
P 4 1.03107	C 4 -0.38763	C 4 -0.30171	
N 5 -0.57108	C 5 -0.22044	Н 5 0.23272	
C 6 0.07738	Н 6 0.24782	C 6 -0.23091	
C 7 -0.27305	C 7 -0.20830	Н 7 0.21427	
H 8 0.26914	Н 8 0.27281	C 8 -0.35558	
C 9 -0.16336	C 9 -0.16501	Н 9 0.20794	
H 10 0.26198	H 10 0.27488	C 10 0.02201	
C 11 -0.28436	C 11 -0.20125	H 11 0.19489	
H 12 0.26224	H 12 0.27473		
C 13 0.08273	C 13 -0.20482		
H 14 0.24367	H 14 0.26522		
C 15 -0.36941	C 15 -0.39364		
C 16 -0.22953	C 16 -0.21857		
H 17 0.25609	H 17 0.25249		
C 18 -0.21946	C 18 -0.21637		
H 19 0.25507	Н 19 0.27192		
C 20 -0.20777	C 20 -0.18116		
H 21 0.25470	H 21 0.27229		
C 22 -0.21991	C 22 -0.20690		
H 23 0.25442	H 23 0.27119		
C 24 -0.21700	C 24 -0.21059		
H 25 0.25541	H 25 0.24881		
C 26 -0.37056	C 26 -0.75895		
C 27 -0.21995	H 27 0.31459		
H 28 0.26372	H 28 0.29601		
C 29 -0.22762	C 29 -0.48419		
H 30 0.25531	H 30 0.25987		
C 31 -0.21227	H 31 0.29568		
H 32 0.25403	C 32 -0.75212		
C 33 -0.21971	H 33 0.28994		
H 34 0.25404	H 34 0.30952		
C 35 -0.22022	C 35 -0.40244		
Н 36 0.24175	C 36 -0.21071		
C 37 -0.75848	H 37 0.24761		
H 38 0.28473	C 38 -0.21617		
H 39 0.28296	H 39 0.26707		
C 40 -0.47744	C 40 -0.18248		
H 41 0.25149	H 41 0.27078		
H 42 0.27222	C 42 -0.21001		
C 43 -0.74775	H 43 0.27319		
H 44 0.27804	C 44 -0.22529		
H 45 0.27901	H 45 0.25487		
C 46 -0.37946	C 46 -0.38546		
C 47 -0.21050	C 47 -0.20136		
H 48 0.25723	H 48 0.26556		
C 49 -0.22216	C 49 -0.20213		
H 50 0.25503	H 50 0.27449		
C 51 -0.20633	C 51 -0.16173		
H 52 0.25417	H 52 0.27481		
C 53 -0.22494	C 53 -0.20910		

Н 54	0.25510	H 54	0.27288	
C 55	-0.22945	C 55	-0.21791	
Н 56	0.24654	H 56	0.24800	
C 57	-0.37284			
C 58	-0.22668			
Н 59	0.25967			
C 60	-0.22282			
H 61	0.25658			
C 62	-0.21388			
Н 63	0.25657			
C 64	-0.22074			
Н 65	0.25681			
C 66	-0.22575			
Н 67	0.25206			

Table S3. Second order perturbation calculated strength of donor acceptor interaction $(n \rightarrow \sigma^*)$ in [{Pt(κ_2 -SeC₅H₄N)(dppp)}] unit of complex **2a** along with details of corresponding lone pair and antibonding orbital with its occupancy.

Fragments	Lp	M-L* type	Occupancy (M-L *)	ΔE _{M-L*} (kcal/mole)
${Pt(dppp)}/{SeC_{5}H_{4}N}$	n_{Se}	$\sigma^*(Pt-P)$	0.556	147.1
	$n_{\rm N}$	$\sigma^*(Pt-P)$	0.382	89.8

Table S4. EDA analysis of [$\{Pt(\kappa_2-SeC_5H_4N)(dppp)\}$] fragment of complex **2a** along with decomposed orbital interaction energies (E_{Orb}) for both crystal structure and DFT optimized geometry.

Fue oute	Г	E	Б		
Fragments	E _{int} (kaal/mala)	E _{orb}	E _{steric}		
	(Keal/IIIole)	(Kcal/IIIole)	(Kcal/IIIole)		
	-283.2	-164.7	-114.4		
$(\mathbf{D}_{\mathbf{f}}(\mathbf{d}_{\mathbf{f}},\mathbf{m}_{\mathbf{f}}))/((\mathbf{f}_{\mathbf{f}},\mathbf{f}_{\mathbf{f}},\mathbf{f}_{\mathbf{f}},\mathbf{f}_{\mathbf{f}},\mathbf{f}_{\mathbf{f}}))$	Decomposed E_{orb} interactions				
${Pl (appp)}/{(K_2-SeC_5H_4N)}$		-81.3			
(X-ray crystal Structure)	-37.0				
		-9.2			
		-8.0			
_					
	-277.3	-164.3	-113.0		
{Pt (dppp)}/{(κ_2 -SeC ₅ H ₄ N)}	Deco	mposed E_{orb} interact	ions		
(DFT optimized structure)		-77.5			
		-37.8			
		-8.2			
		-8.0			

Figure S2. Second order perturbation theory computed two most stabilizing interactions present in [{Pt(κ_2 -SeC₅H₄N)(dppp)}] unit of complex **2a**; Three-dimensional contour plots for 3c-4e bonding in (P-Pt...Se) which includes the lone pair of Se i.e. 1c/1e donor (left), formal σ *Pt-P orbital (middle) and the overlap between the lone pair and σ *Pt-P orbital is plotted on the right side; the figure below is for 3c-4e bonding in (P-Pt...N) interaction.

Atoms	$[{(Me_2Sn)_5O_3Cl_5}]$	$[{(Me_2Sn)_5O_3Cl_5}]$
	(X-ray Crystal Structure)	(DFT Optimized Geometry)
Sn	1.74902	1.79094
Sn	1.90083	1.91683
Sn	1.96910	2.02771
Sn	1.90001	1.97672
Sn	1.74532	1.79731
Cl	-0.66189	-0.64378
Cl	-0.64394	-0.62379
Cl	-0.71654	-0.65420
Cl	-0.62504	-0.63232
Cl	-0.59738	-0.59245
0	-1.20264	-1.19467
0	-1.21424	-1.21185
0	-1.19626	-1.18400
C	-1.02428	-1.15811
Н	0.22659	0.26378
Н	0.22835	0.25958
Н	0.22781	0.25877
C	-1.03262	-1.15473
Н	0.23387	0.26108
Н	0.23223	0.26108
Н	0.22525	0.26062
C	-1.03432	-1.16623
H	0.22900	0.27309
H	0.23380	0.26436
Н	0.22202	0.25143
C	-1.04145	-1.15840
Н	0.22739	0.27240
Н	0.22688	0.25677
Н	0.23572	0.26241
C	-1.04662	-1.17925
H	0.23182	0.25986
H	0.22030	0.24513
H	0.24212	0.27573
	-1.04535	-1.17472
H	0.23289	0.26263
H	0.24015	0.27690
H C	0.21815	0.25327
	-1.03411	-1.1/121
	0.22/98	0.25017
	0.24475	0.20340
П	0.22985	0.20732
	-1.03400	
	0.24302	0.27344
	0.22155	0.25750
	_1 02550	_1 15006
н	0 22076	0.26052
н н	0.22970	0.20032
н	0.23701	0.20070
	-1 01294	-1 15516
н	0 23386	0.26168
н	0.25500	0.20100
H	0.23252	0.26406

Table S5. NBO computed NPA charges on crystal structure and DFT optimized geometry of [{(Me₂Sn)₅O₃Cl₅}] unit of complex 2a. (For numbering see Figure S1)

Table S6. NBO computed NPA charges on crystal structure and DFT optimized geometry of [{(Et₂Sn)₅O₃Cl₅}] unit of complex 2b. (For numbering see Figure S1)

Atoms	$[\{(Et_2Sn)_5O_3Cl_5\}]$	$[\{(Et_2Sn)_5O_3Cl_5\}]$
	(X-ray Crystal Structure)	(DFT Optimized Geometry)
Sn 1	1.78508	1.84192
Sn 2	1.95514	2.00537
Sn 3	2.05219	2.13025
Sn 4	1,93530	2.06758
Sn 5	1.78084	1.83468
Cl 6	-0.63949	-0.62018
Cl 7	-0 64465	-0 64390
CL 8	-0 70959	-0.65812
Cl 9	-0.64507	-0.63300
Cl 10	-0 54498	-0 58640
0.11	-1 22557	-1 24044
0.12	-1 24093	-1 27413
013	-1 20806	-1 23150
C 14	-0.81986	-0.91465
Н 15	0 22298	0.26278
H 16	0.21947	0.25247
C 17	-0 59381	-0.69602
H 18	0.19628	0.22540
H 10	0.19316	0.22340
Н 20	0.21/84	0.22411
C 21	0.82400	0.25002
	0.22584	-0.90915
П 22	0.22384	0.20334
П 25	0.21995	0.23073
U 24	-0.39078	-0.09559
П 25	0.20777	0.23295
H 20	0.19240	0.22436
H 27	0.20521	0.22970
C 28	-0.85599	-0.91690
H 29	0.21305	0.24783
H 30	0.22318	0.25682
C 31	-0.59116	-0.69//3
H 32	0.19180	0.22406
H 33	0.21564	0.24599
H 34	0.20454	0.24139
C 35	-0.82721	-0.92566
H 36	0.22553	0.25880
H 37	0.21710	0.26376
C 38	-0.59235	-0.68590
H 39	0.19715	0.22669
H 40	0.21215	0.23741
H 41	0.19184	0.22807
C 42	-0.84398	-0.94948
H 43	0.22386	0.25098
H 44	0.23401	0.27725
C 45	-0.59340	-0.68449
H 46	0.20042	0.22761
H 47	0.20083	0.22606
H 48	0.19517	0.23880
C 49	-0.84724	-0.94619
H 50	0.21028	0.24383
H 51	0.23438	0.27013
C 52	-0.58762	-0.69112
Н 53	0.19873	0.22702

Н 54	0.19627	0.22810
Н 55	0.20234	0.24413
C 56	-0.81379	-0.93305
Н 57	0.21378	0.24953
Н 58	0.23652	0.25248
C 59	-0.59406	-0.69652
H 60	0.19444	0.22567
H 61	0.20245	0.23958
Н 62	0.20288	0.24662
C 63	-0.83362	-0.93841
Н 64	0.22792	0.26019
H 65	0.23529	0.26406
C 66	-0.59512	-0.69590
Н 67	0.19876	0.22730
H 68	0.20810	0.24682
Н 69	0.19559	0.23062
C 70	-0.81443	-0.91044
H 71	0.22340	0.25969
Н 72	0.23439	0.26031
C 73	-0.59044	-0.69462
Н 74	0.19972	0.22462
Н 75	0.20156	0.23218
Н 76	0.20971	0.24937
C 77	-0.79974	-0.90961
Н 78	0.23054	0.25745
Н 79	0.22375	0.25796
C 80	-0.59670	-0.69284
H 81	0.19855	0.22470
H 82	0.20806	0.24621
H 83	0.20364	0.23575

Table S7. NBO computed NPA charges on DFT optimized geometry of $[Sn(CH_3)_2Cl_2]$ complex and monomer model extracted from $[\{(Me_2Sn)_5O_3Cl_5\}]$ (see Sn@1 centre in Figure S1) unit of complex **2a**.

Table S8. Second order perturbation theory calculated strength of donor acceptor interaction $(n \rightarrow \sigma^*)$ in [{ $(Me_2Sn)_5O_3Cl_5$ }] unit of complex **2a** along with the details of corresponding lone pair and antibonding orbital with its occupancy.

Donor	Acceptor M-L* type	Occupancy (M-L*)	ΔE_{M-L*} (kcal/mole)
$n_{Cl}(LP)$	$\sigma^*(Sn-Cl)$	0.182	40.2
n _o (LP)	$\sigma^*(Sn-Cl)$	0.154	32.5
n _o (LP)	$\sigma^*(Sn-O)$	0.127	22.8
n _o (LP)	$\sigma^*(Sn-O)$	0.153	19.41
n _o (LP)	$\sigma^*(Sn-O)$	0.152	19.07
n _{Cl} (LP)	$\sigma^*(Sn-Cl)$	0.144	19.42
	$Donor$ $n_{C1}(LP)$ $n_{O}(LP)$ $n_{O}(LP)$ $n_{O}(LP)$ $n_{O}(LP)$ $n_{C1}(LP)$	DonorAcceptor M-L* type $n_{Cl}(LP)$ $\sigma^*(Sn-Cl)$ $n_0(LP)$ $\sigma^*(Sn-Cl)$ $n_0(LP)$ $\sigma^*(Sn-O)$ $n_0(LP)$ $\sigma^*(Sn-O)$ $n_0(LP)$ $\sigma^*(Sn-O)$ $n_0(LP)$ $\sigma^*(Sn-O)$ $n_0(LP)$ $\sigma^*(Sn-O)$ $n_0(LP)$ $\sigma^*(Sn-O)$	$\begin{array}{c cccc} Donor & Acceptor & Occupancy \\ M-L^* type & (M-L^*) \\ n_{Cl}(LP) & \sigma^*(Sn-Cl) & 0.182 \\ n_{O}(LP) & \sigma^*(Sn-Cl) & 0.154 \\ n_{O}(LP) & \sigma^*(Sn-O) & 0.127 \\ n_{O}(LP) & \sigma^*(Sn-O) & 0.153 \\ n_{O}(LP) & \sigma^*(Sn-O) & 0.152 \\ n_{Cl}(LP) & \sigma^*(Sn-Cl) & 0.144 \\ \end{array}$

n_{ci}

Figure S3. Second order perturbation theory computed six most stabilizing interactions present in $\{(Me_2Sn)_5O_3Cl_5\}$ core of complex **2a**. These three dimensional contour plots are arranged according to the interactions present in Table S8.

Table S9. EDA analysis of $\{(Me_2Sn)_5O_3Cl_5\}$ fragment of complex **2a** along with decomposed orbital interaction energy (E_{Orb}) for all the three fragments.

Fragments	E _{int} (kcal/mole)	E _{orb} (kcal/mole)	E _{steric} (kcal/mole)
	-102.5	-105.8	3.34
$\{(M_{2}, S_{2}), O_{1}, C_{1}\} = \{S_{2} \otimes C_{1}, M_{2}\}$	Decom	$nposed E_{orb}$ interactions	
$\{(1010_2311)_40501_3\}\dots\{3110_001_21010_2\}$		-66.0	
		-11.3	
		-9.3	
	-705.1	-254.2	-450.8
	Decomposed E_{orb} interactions		
$(M_{2}, \Omega_{2}) \cap (\Omega_{1}) = (\Omega_{2} \cap \Omega_{2})$		-74.2	
$\{(Me_2Sn)_4O_5Cl_5\}\dots\{Sn(a)SNe_2\}$		-43.7	
		-20.0	
		-14.0	
		-10.7	
		-10.9	
	-313.5	-176.8	-136.7
$\{(Me_2Sn)_4O_5Cl_4\}\dots\{Sn@2ClMe_2\}$	Decom	nposed E_{orb} interact	tions
		-78.4	
		-30.9	
		-11.6	

Table S10. Second order perturbation theory calculated strength of donor acceptor interaction $(n \rightarrow \sigma^*)$ in {(Ete₂Sn)₅O₃Cl₅} unit of complex **2b** along with details of corresponding lone pair and antibonding orbital with its occupancy.

Molecule	Donor	Acceptor M-L* type	Occupancy (M-L*)	ΔE_{M-L*} (kcal/mole)
	n _o (LP)	$\sigma^*(Sn-Cl)$	0.218	47.1
	n _o (LP)	$\sigma^*(Sn-Cl)$	0.216	41.7
$[{(Et_2Sn)_5O_3Cl_5}]$	n _o (LP)	$\sigma^*(Sn-Cl)$	0.154	32.3
	$n_{O}(LP)$	$\sigma^*(Sn-O)$	0.138	20.7
	n _o (LP)	$\sigma^*(Sn-O)$	0.161	18.3
	n _o (LP)	$\sigma^*(Sn-O)$	0.158	18.8
	n _{Cl} (LP)	$\sigma^*(SnCl)$	0.153	24.9

Pt 1 0.11302 P 2 1.03853 P 3 1.03011 Se 4 -0.10529 Cl 5 -0.49317 N 6 -0.54813 C 7 -0.34010 C 8 -0.22528 H 9 0.23674 C 10 -0.22507 H 11 0.24526 C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26662 C 21 -0.23246 H 22 0.24667 C 23 -0.22433 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24024 C 45 -0.22528 H 45 0.24077	$[\{PtCl (SeC_5H_4N)(dppp)\}]$			
P 31.03011Se 4-0.10529Cl 5-0.49317N 6-0.54813C 7-0.34010C 8-0.22528H 90.25674C 10-0.22507H 110.24526C 12-0.22626H 130.24214C 14-0.22762H 150.24237C 16-0.2217H 170.25087C 18-0.36214C 19-0.19842H 200.26962C 21-0.23246H 220.24667C 23-0.22666H 240.24117C 25-0.23303H 260.24208C 27-0.22433H 280.23490C 29-0.75946H 300.27528H 310.27093C 32-0.47401H 330.24746H 340.25631C 35-0.74837H 360.26690H 370.27213C 38-0.36579C 39-0.23876H 400.24062C 41-0.23968H 420.24151C 43-0.21981H 440.24084C 45-0.22722H 460.24254C 47-0.20927H 480.28234C 49-0.33700C 52-0.23188H 530.24077	Pt 1 P 2	0.11302 1.05853		
Se 4 -0.10529 Cl 5 -0.49317 N 6 -0.54813 C 7 -0.34010 C 8 -0.22528 H 9 0.25674 C 10 -0.22507 H 11 0.24526 C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.2217 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22636 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.78936 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.2722 H 46 0.24208 C 47 -0.2027 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110	P 3	1.03011		
Cl 5 -0.49317 N 6 -0.534010 C 7 -0.34010 C 8 -0.22528 H 9 0.25674 C 10 -0.22507 H 11 0.24526 C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.2272 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24077	Se 4	-0.10529		
N 6 -0.54813 C 7 -0.34010 C 8 -0.22528 H 9 0.25674 C 10 -0.22507 H 11 0.24526 C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.28234 C 45 -0.22722 H 46 0.28234 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24177	Cl 5	-0.49317		
C7 -0.34010 C8 -0.22528 H9 0.25674 C10 -0.22507 H11 0.24526 C12 -0.22626 H13 0.24214 C14 -0.22762 H15 0.24237 C16 -0.22127 H17 0.25087 C18 -0.36214 C19 -0.19842 H20 0.26962 C21 -0.23246 H22 0.24667 C23 -0.22630 H24 0.24117 C25 -0.23303 H26 0.24208 C27 -0.22433 H28 0.23490 C29 -0.75946 H30 0.27528 H31 0.27093 C32 -0.47401 H33 0.24746 H34 0.25631 C35 -0.74837 H36 0.26690 H37 0.27213 C38 -0.36579 C39 -0.23876 H40 0.24062 C41 -0.23968 H42 0.21951 H44 0.24062 C41 0.28234 C49 -0.33700 C50 -0.21969 H51 0.24976 C52 -0.23188 <tr< td=""><td>N 6</td><td>-0.54813</td></tr<>	N 6	-0.54813		
C8 -0.22528 H9 0.25674 C10 -0.22507 H11 0.24526 C12 -0.2626 H13 0.24214 C14 -0.22762 H15 0.24237 C16 -0.22127 H17 0.25087 C18 -0.36214 C19 -0.19842 H20 0.26962 C21 -0.23246 H22 0.24667 C23 -0.22666 H24 0.24117 C25 -0.23303 H26 0.24208 C27 -0.22433 H28 0.23490 C29 -0.75946 H30 0.27528 H31 0.27093 C32 -0.47401 H33 0.24746 H34 0.25631 C35 -0.74837 H36 0.26690 H37 0.27213 C38 -0.23876 H40 0.24062 C41 -0.23968 H42 0.24151 C43 -0.21981 H44 0.24064 C44H 0.24976 C52 -0.23188 H43 0.28234 C49 -0.33700 C50 -0.21969 H51 0.2	C 7	-0.34010		
H9 0.25674 C10 -0.22507 H11 0.24526 C12 -0.22626 H13 0.24214 C14 -0.22762 H15 0.24237 C16 -0.22127 H17 0.25087 C18 -0.36214 C19 -0.19842 H20 0.26962 C21 -0.23246 H22 0.24667 C23 -0.22630 H24 0.24117 C25 -0.23303 H26 0.24208 C27 -0.22433 H28 0.23490 C29 -0.75946 H30 0.27528 H31 0.27093 C32 -0.47401 H33 0.24746 H34 0.25631 C35 -0.74837 H36 0.26690 H37 0.27213 C38 -0.36579 C39 -0.23876 H40 0.24062 C41 -0.23968 H42 0.24151 C43 -0.21981 H44 0.24054 C44 0.24062 C44 0.24062 C44 0.24062 C44 0.24064 C45 -0.22722 H46 0.24554	C 8	-0.22528		
C 10 -0.22507 H 11 0.24526 C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.24276 C 52 -0.23188 H 53 0.24077	Н 9	0.25674		
H 11 0.24526 C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.222666 H 24 0.24117 C 25 -0.22303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24062 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24077	C 10	-0.22507		
C 12 -0.22626 H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.33246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24062 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24077	H 11	0.24526		
H 13 0.24214 C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24077	C 12	-0.22626		
C 14 -0.22762 H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.28234 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24076 C 52 -0.23188 H 55 0.24077	H 13	0.24214		
H 15 0.24237 C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.28234 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24077	C 14	-0.22762		
C 16 -0.22127 H 17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.2303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.2722 H 46 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 55 0.24077	H 15	0.24237		
H17 0.25087 C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24076 C 52 -0.23188 H 53 0.24110 C 54 -0.22528	C 16	-0.22127		
C 18 -0.36214 C 19 -0.19842 H 20 0.26962 C 21 -0.33246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.2303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24076 C 52 -0.23188 H 55 0.24077	H 17	0.25087		
C 19 0.19842 H 20 0.26962 C 21 -0.23246 H 22 0.24667 C 23 -0.22666 H 24 0.24117 C 25 -0.2303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24076 C 52 -0.23188 H 53 0.24077	C 18	-0.36214		
120 0.26962 $C 21$ -0.23246 $H 22$ 0.24667 $C 23$ -0.22666 $H 24$ 0.24117 $C 25$ -0.23303 $H 26$ 0.24208 $C 27$ -0.22433 $H 28$ 0.23490 $C 29$ -0.75946 $H 30$ 0.27528 $H 31$ 0.27093 $C 32$ -0.47401 $H 33$ 0.24746 $H 34$ 0.25631 $C 35$ -0.74837 $H 36$ 0.26690 $H 37$ 0.27213 $C 38$ -0.36579 $C 39$ -0.23876 $H 40$ 0.24062 $C 41$ -0.23968 $H 42$ 0.24151 $C 43$ -0.21981 $H 44$ 0.24084 $C 45$ -0.22722 $H 46$ 0.24554 $C 47$ -0.20927 $H 48$ 0.28234 $C 49$ -0.33700 $C 50$ -0.21969 $H 51$ 0.24076 $C 52$ -0.23188 $H 53$ 0.24077	C 19	-0 19842		
120 0.23346 122 0.24667 123 -0.22666 1124 0.24117 125 -0.23303 126 0.24208 127 -0.22433 128 0.23490 129 -0.75946 130 0.27528 131 0.27093 122 -0.47401 133 0.24746 134 0.25631 125 -0.74837 136 0.26690 137 0.27213 126 0.23876 140 0.24062 141 -0.23968 142 0.24151 1238 -0.21981 144 0.24084 142 0.24151 144 0.24084 144 0.24084 145 -0.22722 146 0.24554 148 0.28234 148 0.28234 148 0.28234 148 0.24976 151 0.24976 152 -0.23188 153 0.24077	H 20	0.26962		
H 22 0.24667 $C 23$ -0.22666 $H 24$ 0.24117 $C 25$ -0.23303 $H 26$ 0.24208 $C 27$ -0.22433 $H 28$ 0.23490 $C 29$ -0.75946 $H 30$ 0.27528 $H 31$ 0.27093 $C 32$ -0.47401 $H 33$ 0.24746 $H 34$ 0.25631 $C 35$ -0.74837 $H 36$ 0.26690 $H 37$ 0.27213 $C 38$ -0.36579 $C 39$ -0.23876 $H 40$ 0.24062 $C 41$ -0.23968 $H 42$ 0.24151 $C 43$ -0.21981 $H 44$ 0.24084 $C 45$ -0.22722 $H 46$ 0.24554 $C 47$ -0.20927 $H 48$ 0.28234 $C 49$ -0.33700 $C 50$ -0.21969 $H 51$ 0.24976 $C 52$ -0.23188 $H 53$ 0.24110 $C 54$ -0.22528 $H 55$ 0.24077	C 21	-0 23246		
1122 0.22666 $H 24$ 0.24117 $C 25$ -0.23303 $H 26$ 0.24208 $C 27$ -0.22433 $H 28$ 0.23490 $C 29$ -0.75946 $H 30$ 0.27528 $H 31$ 0.27093 $C 32$ -0.47401 $H 33$ 0.24746 $H 34$ 0.25631 $C 35$ -0.74837 $H 36$ 0.26690 $H 37$ 0.27213 $C 38$ -0.36579 $C 39$ -0.23876 $H 40$ 0.24062 $C 41$ -0.23968 $H 42$ 0.24151 $C 43$ -0.21981 $H 44$ 0.24084 $C 45$ -0.22722 $H 46$ 0.24554 $C 47$ -0.20927 $H 48$ 0.28234 $C 49$ -0.33700 $C 50$ -0.21969 $H 51$ 0.24976 $C 52$ -0.23188 $H 53$ 0.24110 $C 54$ -0.22528 $H 55$ 0.24077	Н 22	0.23240		
124 0.24117 $C 25$ -0.23303 $H 26$ 0.24208 $C 27$ -0.22433 $H 28$ 0.23490 $C 29$ -0.75946 $H 30$ 0.27528 $H 31$ 0.27093 $C 32$ -0.47401 $H 33$ 0.24746 $H 34$ 0.25631 $C 35$ -0.74837 $H 36$ 0.26690 $H 37$ 0.27213 $C 38$ -0.36579 $C 39$ -0.23876 $H 40$ 0.24062 $C 41$ -0.23968 $H 42$ 0.24151 $C 43$ -0.21981 $H 44$ 0.24084 $C 45$ -0.22722 $H 46$ 0.24554 $C 47$ -0.20927 $H 48$ 0.28234 $C 49$ -0.33700 $C 50$ -0.21969 $H 51$ 0.24976 $C 52$ -0.23188 $H 53$ 0.24110 $C 54$ -0.22528 $H 55$ 0.24077	C 23	0.24007		
1124 0.24117 C 25 -0.23303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24077	С 23 Н 24	-0.22000		
-0.2303 -0.2303 H 26 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24077	C 25	0.22202		
H 20 0.24208 C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24077	C 23	-0.23303		
C 27 -0.22433 H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	H 20	0.24208		
H 28 0.23490 C 29 -0.75946 H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	C 27	-0.22433		
$\begin{array}{cccccc} -0.75946 \\ H 30 \\ 0.27528 \\ H 31 \\ 0.27093 \\ C 32 \\ -0.47401 \\ H 33 \\ 0.24746 \\ H 34 \\ 0.25631 \\ C 35 \\ -0.74837 \\ H 36 \\ 0.26690 \\ H 37 \\ 0.27213 \\ C 38 \\ -0.36579 \\ C 39 \\ -0.23876 \\ H 40 \\ 0.24062 \\ C 41 \\ -0.23968 \\ H 42 \\ 0.24151 \\ C 43 \\ -0.21981 \\ H 44 \\ 0.24084 \\ C 45 \\ -0.22722 \\ H 46 \\ 0.24554 \\ C 47 \\ -0.20927 \\ H 48 \\ 0.28234 \\ C 49 \\ -0.33700 \\ C 50 \\ -0.21969 \\ H 51 \\ 0.24976 \\ C 52 \\ -0.23188 \\ H 53 \\ 0.24110 \\ C 54 \\ -0.22528 \\ H 55 \\ 0.24077 \\ \end{array}$	H 28	0.23490		
H 30 0.27528 H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	C 29	-0.75946		
H 31 0.27093 C 32 -0.47401 H 33 0.24746 H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	H 30	0.27528		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 31	0.27093		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C 32	-0.47401		
H 34 0.25631 C 35 -0.74837 H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	H 33	0.24746		
$ \begin{array}{cccccc} C 35 & & -0.74837 \\ H 36 & & 0.26690 \\ H 37 & & 0.27213 \\ C 38 & & -0.36579 \\ C 39 & & -0.23876 \\ H 40 & & 0.24062 \\ C 41 & & -0.23968 \\ H 42 & & 0.24151 \\ C 43 & & -0.21981 \\ H 44 & & 0.24084 \\ C 45 & & -0.22722 \\ H 46 & & 0.24554 \\ C 47 & & -0.20927 \\ H 48 & & 0.28234 \\ C 49 & & -0.33700 \\ C 50 & & -0.21969 \\ H 51 & & 0.24976 \\ C 52 & & -0.23188 \\ H 53 & & 0.24110 \\ C 54 & & -0.22528 \\ H 55 & & 0.24077 \\ \end{array} $	H 34	0.25631		
H 36 0.26690 H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	C 35	-0.74837		
H 37 0.27213 C 38 -0.36579 C 39 -0.23876 H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	H 36	0.26690		
$\begin{array}{ccccc} C 38 & & -0.36579 \\ C 39 & & -0.23876 \\ H 40 & & 0.24062 \\ C 41 & & -0.23968 \\ H 42 & & 0.24151 \\ C 43 & & -0.21981 \\ H 44 & & 0.24084 \\ C 45 & & -0.22722 \\ H 46 & & 0.24554 \\ C 47 & & -0.20927 \\ H 48 & & 0.28234 \\ C 49 & & -0.33700 \\ C 50 & & -0.21969 \\ H 51 & & 0.24976 \\ C 52 & & -0.23188 \\ H 53 & & 0.24110 \\ C 54 & & -0.22528 \\ H 55 & & 0.24077 \end{array}$	Н 37	0.27213		
$ \begin{array}{ccccc} C \ 39 & & -0.23876 \\ H \ 40 & & 0.24062 \\ C \ 41 & & -0.23968 \\ H \ 42 & & 0.24151 \\ C \ 43 & & -0.21981 \\ H \ 44 & & 0.24084 \\ C \ 45 & & -0.22722 \\ H \ 46 & & 0.24554 \\ C \ 47 & & -0.20927 \\ H \ 48 & & 0.28234 \\ C \ 49 & & -0.33700 \\ C \ 50 & & -0.21969 \\ H \ 51 & & 0.24976 \\ C \ 52 & & -0.23188 \\ H \ 53 & & 0.24110 \\ C \ 54 & & -0.22528 \\ H \ 55 & & 0.24077 \\ \end{array} $	C 38	-0.36579		
H 40 0.24062 C 41 -0.23968 H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	C 39	-0.23876		
$ \begin{array}{c cccc} C \ 41 & & -0.23968 \\ H \ 42 & & 0.24151 \\ C \ 43 & & -0.21981 \\ H \ 44 & & 0.24084 \\ C \ 45 & & -0.22722 \\ H \ 46 & & 0.24554 \\ C \ 47 & & -0.20927 \\ H \ 48 & & 0.28234 \\ C \ 49 & & -0.33700 \\ C \ 50 & & -0.21969 \\ H \ 51 & & 0.24976 \\ C \ 52 & & -0.23188 \\ H \ 53 & & 0.24110 \\ C \ 54 & & -0.22528 \\ H \ 55 & & 0.24077 \\ \end{array} $	H 40	0.24062		
H 42 0.24151 C 43 -0.21981 H 44 0.24084 C 45 -0.22722 H 46 0.24554 C 47 -0.20927 H 48 0.28234 C 49 -0.33700 C 50 -0.21969 H 51 0.24976 C 52 -0.23188 H 53 0.24110 C 54 -0.22528 H 55 0.24077	C 41	-0.23968		
$ \begin{array}{ccccc} C \ 43 & & -0.21981 \\ H \ 44 & & 0.24084 \\ C \ 45 & & -0.22722 \\ H \ 46 & & 0.24554 \\ C \ 47 & & -0.20927 \\ H \ 48 & & 0.28234 \\ C \ 49 & & -0.33700 \\ C \ 50 & & -0.21969 \\ H \ 51 & & 0.24976 \\ C \ 52 & & -0.23188 \\ H \ 53 & & 0.24110 \\ C \ 54 & & -0.22528 \\ H \ 55 & & 0.24077 \\ \end{array} $	H 42	0.24151		
H 440.24084C 45-0.22722H 460.24554C 47-0.20927H 480.28234C 49-0.33700C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	C 43	-0.21981		
C 45-0.22722H 460.24554C 47-0.20927H 480.28234C 49-0.33700C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	H 44	0.24084		
H 460.24554C 47-0.20927H 480.28234C 49-0.33700C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	C 45	-0.22722		
C 47-0.20927H 480.28234C 49-0.33700C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	H 46	0.24554		
H 480.28234C 49-0.33700C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	C 47	-0.20927		
C 49-0.33700C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	H 48	0.28234		
C 50-0.21969H 510.24976C 52-0.23188H 530.24110C 54-0.22528H 550.24077	C 49	-0.33700		
H 51 C 52 H 53 C 54 H 55 D .24976 -0.23188 H 0.24110 -0.22528 0.24077	C 50	-0.21969		
C 52 H 53 C 54 H 55 C 54 C 54 C 54 C 54 C 54 C 54 C 54 C	H 51	0.24976		
H 53 C 54 H 55 O.24110 -0.22528 O.24077	C 52	-0.23188		
C 54 H 55	H 53	0.24110		
H 55 0.24077	C 54	-0 22528		
	H 55	0.24077		

Table S11. NBO computed NPA charges on DFT optimized geometry of $[{PtCl(SeC_5H_4N)(dppp)}]$ fragment of complex **2b**.

C 56	-0.22843
Н 57	0.24313
C 58	-0.20564
Н 59	0.25210
C 60	-0.27795
H 61	0.24977
C 62	-0.20287
Н 63	0.24087
C 64	-0.30198
Н 65	0.24006
C 66	0.04743
Н 67	0.21386
C 68	0.07016

DFT optimized geometries

	[{Pt(k2-SeC5H4	N)(dppp)}] unit of c	complex 2a	
	E_{SCF} =	= -4495.39087860 E	h	
	G =	-4494.93057201 Eh		
Pt	8.660687000000	2.061076000000	3.564174000000	
Se	10.874042000000	3.230703000000	3.613252000000	
Р	8.980038000000	0.779256000000	5.403547000000	
Р	6.571942000000	1.162657000000	3.315585000000	
Ν	8.889371000000	3.227011000000	1.806942000000	
С	10.131585000000	3.778197000000	1.944099000000	
С	10.680488000000	4.590407000000	0.938527000000	
Н	11.679586000000	5.027583000000	1.073588000000	
С	9.928514000000	4.809021000000	-0.222826000000	
Н	10.333380000000	5.440772000000	-1.028047000000	
С	8.660396000000	4.211259000000	-0.361255000000	
Н	8.053379000000	4.356100000000	-1.265031000000	
С	8.169993000000	3.418793000000	0.681057000000	
Н	7.188764000000	2.928953000000	0.630032000000	
С	10.305804000000	1.390854000000	6.499224000000	
С	10.286670000000	2.750312000000	6.883410000000	
Н	9.50778000000	3.424815000000	6.494786000000	
С	11.277697000000	3.245115000000	7.743419000000	
Н	11.264441000000	4.304793000000	8.038412000000	
C	12.290745000000	2.391869000000	8.214639000000	
Н	13.072385000000	2.784534000000	8.882061000000	
C	12.310703000000	1.040795000000	7.830302000000	
Н	13.105467000000	0.373914000000	8.196485000000	
C	11.319445000000	0.534348000000	6.974552000000	
Н	11.338834000000	-0.522920000000	6.671785000000	
C	9.489786000000	-0.882887000000	4.849126000000	
C	10.550301000000	-0.951993000000	3.916044000000	
H	11.045234000000	-0.026192000000	3.580895000000	
C	10.962898000000	-2.194436000000	3.41/643000000	
H	11./95361000000	-2.244615000000	2.699955000000	
C	10.309315000000	-3.3/0906000000	3.826586000000	
H	10.626425000000	-4.34490600000	3.424/32000000	
C	9.25493/000000	-3.304115000000	4./50/68000000	
Н	8./44914000000	-4.222963000000	5.075646000000	
C	8.849986000000	-2.064169000000	5.271508000000	
H	8.034363000000	-2.032440000000	6.006994000000	
	7.54550000000	0.394/9100000	0.554198000000	
Н	7.867625000000	-0.09/446000000	7.358839000000	
H	7.4498570000000	1.595325000000	7.027529000000	
C	0.2001000000000000000000000000000000000	0.13320000000000000000000000000000000000	5.934998000000 5.537722000000	
H	0.28394/000000	-0.800980000000	5.527755000000 6.780502000000	
H	5.4/2552000000	0.073012000000	0./8930200000	
C	3.008332000000	1.094608000000	4.89801000000	

Н	5.554574000000	2.139516000000	5.269287000000	
Н	4.571737000000	0.795026000000	4.642868000000	
С	6.609273000000	-0.552328000000	2.693781000000	
С	7.766416000000	-0.992263000000	2.016988000000	
Н	8.603723000000	-0.292423000000	1.871205000000	
С	7.853499000000	-2.314823000000	1.560505000000	
Н	8.760527000000	-2.652707000000	1.039043000000	
С	6.790552000000	-3.205928000000	1.782627000000	
Н	6.862982000000	-4.246719000000	1.433012000000	
С	5.632303000000	-2.770807000000	2.450142000000	
Н	4.797023000000	-3.467029000000	2.618007000000	
С	5.536546000000	-1.446261000000	2.903361000000	
Н	4.621194000000	-1.115553000000	3.417094000000	
С	5.497215000000	2.127015000000	2.199285000000	
С	4.933735000000	1.560990000000	1.037552000000	
Н	5.098453000000	0.498131000000	0.806075000000	
С	4.172741000000	2.364919000000	0.171946000000	
Н	3.735220000000	1.924220000000	-0.736371000000	
С	3.970562000000	3.724319000000	0.463813000000	
Н	3.374885000000	4.349917000000	-0.217713000000	
С	4.530706000000	4.288133000000	1.624769000000	
Н	4.376981000000	5.353713000000	1.851237000000	
С	5.298328000000	3.495723000000	2.489361000000	
Н	5.769673000000	3.948021000000	3.376506000000	
	{Me ₁₀ Sn ₅ (μ-O)	₃ (μ-Cl)Cl ₄ } unit of c	complex 2a	
	E _{SCF}	= -3998.50308706 E	h	
	G =	-3998.21294200 Eh		
Sn	2 52060100000	0.465115000000	7 240425000000	

Sn	3.539601000000	9.465115000000	7.349425000000	
Sn	5.529300000000	6.348476000000	6.387937000000	
Sn	6.858948000000	9.403912000000	5.813783000000	
Sn	8.767952000000	6.879965000000	4.492600000000	
Sn	10.026890000000	10.055910000000	3.507978000000	
Cl	2.413090000000	7.233159000000	7.877523000000	
Cl	4.958150000000	11.589076000000	6.728332000000	
Cl	6.841445000000	4.280972000000	5.522554000000	
Cl	10.947532000000	7.521708000000	2.867810000000	
Cl	8.957680000000	12.131343000000	4.347821000000	
0	5.190693000000	8.471176000000	6.782016000000	
0	7.214103000000	7.334962000000	5.786761000000	
0	8.840710000000	8.928028000000	4.656337000000	
С	2.166563000000	9.856383000000	5.744286000000	
Н	2.302257000000	10.891421000000	5.383148000000	
Н	1.133438000000	9.678339000000	6.095533000000	
Н	2.404042000000	9.133619000000	4.941006000000	
С	3.533863000000	10.086894000000	9.403397000000	
Н	4.540445000000	9.860894000000	9.803051000000	
Н	2.766817000000	9.518767000000	9.959696000000	
Н	3 358240000000	11 176882000000	9 455341000000	

С	4.089221000000	6.258509000000	4.806839000000	
Н	3.093758000000	6.484656000000	5.230251000000	
Н	4.113225000000	5.260485000000	4.334943000000	
Н	4.378698000000	7.037383000000	4.075819000000	
С	5.669937000000	5.760635000000	8.43374000000	
H	4.868276000000	6.268624000000	8,998164000000	
Н	6 669261000000	6 083310000000	8 782018000000	
H	5 581256000000	4 662296000000	8 509233000000	
C	5 979333000000	9.866522000000	3 925628000000	
н	4 892333000000	10 004723000000	4 05786700000	
Н	6 193495000000	9 024021000000	3 241552000000	
н	6 441339000000	10 797052000000	3 549962000000	
C II	8 014615000000	10 15484900000	7 430557000000	
н	7 344642000000	10.342231000000	8 28736300000	
и П	8 406822000000	11 00118000000	7.098163000000	
и П	8.490822000000	0 380771000000	7.668925000000	
	7 72071600000	<i>5.38922</i> 1000000	2 70602600000	
	7.730710000000	7 199022000000	2.004672000000	
П	6 681733000000	6 11004000000	2.004072000000	
П	0.001/33000000	0.110949000000	2.90/388000000	
П	8.208348000000	5.443084000000	2.200232000000	
	0.525022000000	5.911439000000	5.820498000000	
П	9.525925000000	5.550805000000	6.224245000000	
Н	10./10302000000	6.702392000000	6.324343000000 5.24608000000	
П	10.800680000000	5.252982000000	5.246989000000	
C	9.326860000000	10.246915000000	1.488077000000	
Н	9.440191000000	11.296/33000000	1.160303000000	
Н	8.232434000000	9.985555000000	1.500386000000	
Н	9.880857000000	9.55250000000	0.831868000000	
C U	11.9/9265000000	10.420364000000	4.31685000000	
H	12.08061000000	11.494614000000	4.555458000000	
H	12.745962000000	10.089831000000	3.592662000000	
Н	12.062206000000	9.812961000000	5.237275000000	
	{FtSn_(11_0)	.(u. CDCL) unit of a	omnlov ?h	
	τ Ε	- 4201 27082848 E	h	
	L_{SCF}	-4391.37982848 Li	II	
~	-0	-4390.81/38041 Ell		
Sn	9.910206000000	5.135761000000	12.060805000000	
Sn	9.359110000000	8.806060000000	12.6/52/3000000	
Sn	6.609699000000	6.857328000000	12.195383000000	
Sn	5.799740000000	10.103569000000	12.896733000000	
Sn	2.890099000000	8.039316000000	12.560537000000	
Cl	7.644800000000	3.869648000000	11.880022000000	
Cl	11.955635000000	6.702918000000	12.394384000000	
Cl	8.807318000000	11.359533000000	13.148181000000	
Cl	3.045651000000	10.676022000000	13.352411000000	
Cl	3.219490000000	5.694573000000	11.78292000000	

6.746772000000

8.805785000000

12.386309000000

12.400341000000

0

0

8.761203000000

7.329682000000

0	4.852488000000	8.359743000000	12.325116000000
С	10.339000000000	4.909317000000	9.949332000000
Н	9.513841000000	4.292406000000	9.542941000000
Н	10.233090000000	5.93698000000	9.545192000000
С	11.721205000000	4.327979000000	9.654014000000
Н	11.925083000000	4.292129000000	8.560801000000
Н	11.822396000000	3.290190000000	10.036646000000
Н	12.519148000000	4.937538000000	10.125362000000
С	10.544865000000	3.887001000000	13.722446000000
Н	9.727380000000	3.150913000000	13.849238000000
Н	11.435897000000	3.349223000000	13.335422000000
С	10.870405000000	4.642331000000	15.009005000000
Н	11.644880000000	5.415308000000	14.833067000000
Н	11.246854000000	3.951266000000	15.795439000000
Н	9.976222000000	5.151528000000	15.420774000000
С	9.983321000000	8.560053000000	14.722175000000
Н	9.098832000000	8.861755000000	15.319479000000
Н	10.140016000000	7.472050000000	14.841834000000
С	11.225279000000	9.369846000000	15.084764000000
Н	11.487631000000	9.247845000000	16.158812000000
Н	11.066565000000	10.451703000000	14.897909000000
Н	12.10104000000	9.037898000000	14.490077000000
С	10.205778000000	9.231455000000	10.740729000000
Н	10.959168000000	10.028379000000	10.896648000000
Н	10.740738000000	8.308732000000	10.446651000000
С	9.125809000000	9.646399000000	9.744838000000
Н	9.561271000000	9.872769000000	8.746911000000
Н	8.586521000000	10.551924000000	10.088844000000
Н	8.368739000000	8.849192000000	9.604224000000
С	6.380241000000	6.502027000000	10.087402000000
Н	7.423376000000	6.391857000000	9.729048000000
Н	5.892928000000	5.512726000000	10.007533000000
С	5.616296000000	7.593626000000	9.346637000000
Н	5.582971000000	7.385682000000	8.254632000000
Н	6.084014000000	8.589830000000	9.480814000000
Н	4.572740000000	7.668120000000	9.708658000000
С	6.037035000000	6.146208000000	14.148396000000
Н	5.498626000000	7.010137000000	14.585881000000
Н	5.295673000000	5.346682000000	13.957550000000
С	7.191835000000	5.678037000000	15.024848000000
Н	6.830998000000	5.362929000000	16.028441000000
Н	7.946149000000	6.475399000000	15.17619000000
Н	7.706661000000	4.811446000000	14.565761000000
С	5.989733000000	10.150880000000	15.041895000000
Н	5.183075000000	9.488830000000	15.415604000000
Н	6.966749000000	9.668896000000	15.242841000000
С	5.907352000000	11.554865000000	15.635879000000
Н	6.000536000000	11.532013000000	16.743931000000
Н	4.937548000000	12.036416000000	15.393688000000
Н	6.724540000000	12.195936000000	15.246650000000

С	5.784997000000	11.555687000000	11.307634000000
Η	5.694080000000	12.541666000000	11.804811000000
Η	6.808982000000	11.489354000000	10.892648000000
С	4.694659000000	11.332324000000	10.263151000000
Η	4.749271000000	12.098814000000	9.459247000000
Η	3.686786000000	11.389522000000	10.720542000000
Н	4.786603000000	10.338968000000	9.78059000000
С	1.685140000000	8.762096000000	10.908905000000
Н	0.937252000000	9.431030000000	11.380284000000
Н	2.387357000000	9.415030000000	10.353509000000
С	1.053858000000	7.697150000000	10.016245000000
Н	0.482222000000	8.163656000000	9.183443000000
Н	0.353576000000	7.044854000000	10.577303000000
Н	1.818638000000	7.028931000000	9.573829000000
С	2.326586000000	7.640785000000	14.618195000000
Н	3.151299000000	8.105598000000	15.195627000000
Н	1.431482000000	8.271863000000	14.793091000000
С	2.104065000000	6.178548000000	14.992842000000
Н	1.834324000000	6.079907000000	16.067704000000
Н	3.011393000000	5.569284000000	14.813936000000
Н	1.291562000000	5.714776000000	14.397708000000

[{PtCl(SeC₅H₄N)(dppp)}] unit of complex 2b

 E_{SCF} = -4955.85449364 Eh

G = -4955.39780556 Eh

Pt	4.919413000000	16.410809000000	5.049215000000
Р	4.644988000000	15.896186000000	2.881490000000
Р	2.818147000000	17.289685000000	5.145800000000
Se	7.031896000000	15.046752000000	5.052592000000
Cl	5.288401000000	16.933717000000	7.321049000000
Ν	5.070123000000	13.560323000000	6.445450000000
С	6.189837000000	15.783122000000	1.898786000000
С	7.201930000000	16.736567000000	2.138866000000
Н	7.069559000000	17.478830000000	2.943307000000
С	8.380878000000	16.711415000000	1.381084000000
Н	9.173360000000	17.448657000000	1.579937000000
С	8.556661000000	15.735331000000	0.384046000000
Η	9.487557000000	15.709634000000	-0.202759000000
С	7.548255000000	14.787624000000	0.143597000000
Η	7.686981000000	14.018522000000	-0.631671000000
С	6.362481000000	14.810559000000	0.896099000000
Н	5.577469000000	14.060100000000	0.718359000000
С	3.791387000000	14.291263000000	2.647200000000
С	4.347870000000	13.164778000000	3.292639000000
Η	5.285509000000	13.280573000000	3.857836000000
С	3.697927000000	11.926061000000	3.224008000000
Η	4.138660000000	11.056174000000	3.734084000000
С	2.482768000000	11.800936000000	2.527682000000
	Pt P P Se Cl N C C H C H C H C H C H C H C H C H C H	Pt4.919413000000P4.644988000000P2.818147000000Se7.031896000000Cl5.288401000000N5.070123000000C6.189837000000C7.201930000000H7.069559000000C8.380878000000H9.173360000000C8.556661000000H9.487557000000C7.548255000000H7.686981000000C6.362481000000C3.791387000000C3.697927000000H4.138660000000C2.482768000000C2.482768000000	Pt4.9194130000016.410809000000P4.6449880000015.89618600000P2.8181470000017.28968500000Se7.0318960000015.046752000000Cl5.2884010000016.933717000000N5.0701230000013.560323000000C6.1898370000015.783122000000C7.2019300000016.736567000000H7.06955900000017.47883000000C8.3808780000016.711415000000H9.1733600000015.735331000000C8.55666100000015.735331000000H9.48755700000014.787624000000H7.6869810000014.018522000000C3.79138700000014.291263000000C3.79138700000013.164778000000H5.2855090000013.280573000000H4.1386600000011.056174000000H4.1386600000011.800936000000

Н	1.964312000000	10.830492000000	2.490364000000
С	1.928296000000	12.917779000000	1.882797000000
Н	0.976339000000	12.827565000000	1.338208000000
С	2.583721000000	14.158681000000	1.933585000000
Н	2.136340000000	15.020142000000	1.419443000000
С	3.715490000000	17.144278000000	1.859841000000
Н	4.424273000000	17.996784000000	1.79107000000
Н	3.637012000000	16.724137000000	0.835254000000
С	2.345714000000	17.632863000000	2.352867000000
Н	1.628941000000	16.787384000000	2.402058000000
Н	1.942341000000	18.327735000000	1.585004000000
С	2.344032000000	18.361241000000	3.702335000000
Н	1.342699000000	18.791205000000	3.909753000000
Н	3.062655000000	19.207710000000	3.708465000000
С	1.616171000000	15.904125000000	5.082921000000
С	0.279245000000	16.093841000000	4.670798000000
Н	-0.093622000000	17.101868000000	4.431816000000
С	-0.586299000000	14.994214000000	4.562672000000
Н	-1.626216000000	15.146267000000	4.235039000000
С	-0.123079000000	13.703044000000	4.870175000000
Н	-0.799990000000	12.840056000000	4.775018000000
С	1.202727000000	13.515114000000	5.292452000000
Н	1.572913000000	12.505112000000	5.521412000000
С	2.077420000000	14.607546000000	5.398636000000
Н	3.131907000000	14.453296000000	5.699864000000
С	2.351998000000	18.330468000000	6.573792000000
С	1.247294000000	18.028727000000	7.391944000000
Н	0.646826000000	17.128084000000	7.196883000000
С	0.923522000000	18.873361000000	8.466989000000
Н	0.062467000000	18.631793000000	9.108826000000
С	1.698284000000	20.015148000000	8.725998000000
Η	1.444421000000	20.672940000000	9.571351000000
С	2.809854000000	20.308780000000	7.916134000000
Η	3.433531000000	21.189612000000	8.131305000000
С	3.145307000000	19.464357000000	6.849537000000
Н	4.043772000000	19.664375000000	6.246047000000
С	7.338396000000	13.003303000000	7.070038000000
Η	8.414526000000	13.195665000000	6.950224000000
С	6.868761000000	12.042451000000	7.969467000000
Η	7.579439000000	11.451539000000	8.568591000000
С	5.480345000000	11.856418000000	8.114869000000
Н	5.068277000000	11.121806000000	8.822161000000
C	4.63180600000	12.647887000000	7.328343000000
Н	3.534059000000	12.546466000000	7.411367000000
C	6.398743000000	13.753171000000	6.320146000000

[SnCl ₂ (CH ₃) ₂] complex				
	E _{SCF}	= -1214.48235559 Eł	1	
	G =	-1214.44720980 Eh		
Cl	2.291009449009	1.864507083967	3.943268424108	
Sn	4.331415782309	1.925017971268	2.709764033067	
Cl	6.096384395913	1.926106112793	4.313790491339	
C	4.467219602733	0.067137912128	1.612438953779	
Н	5.423323623064	0.043205546707	1.055769491053	
Н	4.430979976547	-0.766480256900	2.337895536192	
Н	3.613267332190	-0.003084727202	0.912167509350	
C	4.400819794029	3.826812977834	1.683798936695	
Н	5.356916045330	3.906894558143	1.132376615985	
Н	3.546897079173	3.891613743221	0.982959546718	
Н	4.331764919704	4.630769078041	2.439704461713	