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S1. Physicochemical Methods

Powder X-ray diffraction (PXRD) data were collected using a PANalytical Empyrean 

(PIXcel 3D detector) system equipped with Cu Kα (λ=1.54 Å) radiation. The infrared spectra 

(IR) of the samples were recorded using the KBr pellet method on a Perkin–Elmer GX FTIR 

spectrometer in the region of 400−4000 cm-1. Scanning electron microscopy (SEM) images 

were recorded on a microscope (JEOL JSM 7100F) with an accelerating voltage of 18 kV and 

with a probe current of 102 AMP. The transmission electron microscopy (TEM), high-

resolution TEM observation was acquired on JEOL, JEM 2100 with an electron acceleration 

energy of 200 kV. The samples were ultrasonically dispersed in IPA for 30 min and deposited 

on the copper grid using capillary and dried overnight in air. The content of Ni in the catalysts 

was determined Inductive coupled plasma (ICP) analysis of the catalyst was carried out on 

Perkin Elmer, Optima 2000. The reaction mixture was analyzed by Gas Chromatography (GC-

7890B and GC-MS (Shimadzu, QP-2010, Japan), with HP-5 column which consists of 5% 

diphenyl and 95% dimethyl polysiloxane capillary column and FID as a detector. The surface 

area of the catalyst was calculated using the Branauer-Emmette-Teller (BET) equation 

(micromeritics). X-ray photoelectron spectroscopy (XPS) was performed using an ESCA+ 

(Omicron Nanotechnology, Germany) with a monochromatized Al-Kα X-ray (hν = 1486.7 eV) 

as the excitation source (15 kV and 20 mA). The pass energy for the survey spectrum was 50 

eV and 20 eV in the case of the short scan. The sample was placed on the copper tape and 

degassed in the XPS FEL chamber to minimize the air contamination. A charge neutralizer of 

2 keV was used to overcome any charging problem, and the calibration was done using the 

adventitious C 1s feature at 284.6 eV as a reference. All the spectra were recorded at 90° of the 

X-ray source. 13C solid-state nuclear resonance (NMR) spectroscopy was performed using a 

Bruker 11.7 T spectrometer equipped with a triple resonance 2.5 mm solid-state probe head 

and an avance III console. All experiments were performed at room temperature
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S2. BET analysis of BC and Ni@NC-DC
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Figure S1. (a) BET spectrum of BC and (b) BET spectrum of Ni@NC-DC

S3. HRTEM images of before and after reduction of Ni@NC-DC

Figure S2. (a-c) HRTEM images before the reduction of Ni@NC-DC, (d-f) HRTEM 

images after the reduction of Ni@NC-DC. 
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S4. Particle size distribution of Ni@NC-DC catalyst
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Figure S3. The particle size distribution of Ni@NC-DC catalyst.

S5. Activity of the catalyst

The activity of the catalyst was obtained by using the following formula

  mmol g-1h-1
𝐶𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑚𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑒𝑑
𝑔𝑟𝑎𝑚 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 × 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 ℎ ·

S6. GC-Mass spectrum of products

Figure S4.1. Mass spectrum of 4-aminobenzaldehyde
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Figure S4.2. Mass spectrum of 1-(furan-2-yl)-N-phenylmethanimine

Figure S4.3. Mass spectrum of 1-(furan-2-yl)-N-(p-toly)methanimine

Figure S4.4. Mass spectrum of N-(4-ethylphenyl)-1-(furan-2-yl)methanimine
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Figure S4.5. Mass spectrum of 2-methoxy-5-((phenylimino)methylphenol

Figure S4.6. Mass spectrum of 1-(4-nitrophenyl)-N-pnenylmethanimine

Figure S4.7. Mass spectrum of 5-(benzylideneamino)furan-2-yl)methanol
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Figure S4.8. Mass spectrum of N-(5-methylfuran-2-yl)-1-phenylmethanimine

Figure S4.9. Mass spectrum of N-Isopropylaniline

Figure S4.10. Mass spectrum of N-methylaniline
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Figure S4.11. Mass spectrum of 2-phenyl benzimidazole

Figure S4.12. Mass spectrum of 2-furan benzimidazole

Figure S4.13. Mass spectrum of N-1-diphenylmethanimine
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Figure S4.14. Mass spectrum of 2-(5-methylfuran-2-yl)-1H-benzo[d]imidazole

Figure S4.15. Mass spectrum of (5-(1H-benzo[d]imidazol-2-yl)furan-2-yl)methanol

Figure S4.16. Mass spectrum of 1H-indazole
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Figure S4.17. Mass spectrum of 2-methyl-1H-benzo[d]imidazole

Figure S4.17. Mass spectrum of 2-methyl-1H-benzo[d]imidazole

S7. Recyclability studies of Ni@NC-DC catalyst
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Figure S5. Recyclability studies of Ni@NC-DC catalyst.
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S8. SEM analysis of catalyst before and after reaction

Figure S6. SEM elemental mapping of Fresh catalyst; Distribution of (a) Ni, N, C and O; 

(b) Nickel; (c) Nitrogen; (d) Carbon; (e) Oxygen and (f) SEM-EDAX.

Figure S7. SEM elemental mapping of the catalyst after 5th cycle; Distribution of (a) Ni, N, C and 

O; (b) Nickel; (c) Nitrogen; (d) Carbon; (e) Oxygen and (f) SEM-EDAX.
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S9. Comparison table for reductive amination using heterogeneous catalyst 

Table S1. Comparison of different catalysts for reductive hydrogenation between nitrobenzene and 
benzaldehyde.

Catalyst Solvent Hydrogen 
source

Temp. 
(°C)

Press.
(Mpa)

Time
(h)

Conv. 
(%)

Selec. (%) Ref.

2° 
Amine

Imine

Colloid Pd NPs MeOH H2 25 NS 6 NS 88 NS 1

Mo3S4 THF a H2 70 2 18 >99 99 0 2

Mo3S4 THFb H2 70 2 18 50 0 30 3

Fe+PdC H2O H2O:CO2 80 - 10 86 33 50 4

Fe+FeCl2 H2O H2O:CO2 80 - 10 94 NS 93 4

Pd/Fe3O4@C H2O H2 60 NS 8 99 92 NS 5

Au@TiO2 H2O HCOOH 80 - 3 >99 97 1 6

MoS2 EtOH H2 120 2 5 100 85.2 0.7 7

MoS2 H2O H2 120 2 5 62.1 2.3 74.9 7

Pd@ZSM-5 H2O NaBH4 25 - 20 min 100 98 NS 8

AgPd@C3N4 H2O HCOOH 20 - 20 >99 >99 NS 9

Co2Rh2/C MeOH H2 25 0.1 24 100 93 - 10

Co-Nx/C-800-AT EtAc HCOOH 150 - 10 100 96 NS 11

Co@CN-600-AT THF HCOOH 190 - 15 100 96.1 NS 12

Co@CN-600-AT THF HCOOH 110 - 10 64.5 9.4 83.9 12

Co@NSC THF:H2O HCOOH 170 - 6 100 94.9 NS 13

Co-SiCNC EtOH:H2O H2 110 5 24 NS NS 82 14

CoOx@NC-800 THF: H2O H2 110 5 24 NS NS 88 15

Ni@NC-700-1.5 THF: H2O H2 2 4 >99 46.26 34.4 16

Ni@NC-600-1.5 THF: H2O H2 2 4 >99 97.96 2.04 16

Ni@NC-DC THF:H2O H2 100 20 4 100 95 95 This 
work

awater in ppm bMolecular Sieves C Triethylamine as additive. NS: Not specified
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