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S1. Physicochemical Methods

Powder X-ray diffraction (PXRD) data were collected using a PANalytical Empyrean
(PIXcel 3D detector) system equipped with Cu Ka (A=1.54 A) radiation. The infrared spectra
(IR) of the samples were recorded using the KBr pellet method on a Perkin—Elmer GX FTIR
spectrometer in the region of 400—4000 cm-!. Scanning electron microscopy (SEM) images
were recorded on a microscope (JEOL JSM 7100F) with an accelerating voltage of 18 kV and
with a probe current of 102 AMP. The transmission electron microscopy (TEM), high-
resolution TEM observation was acquired on JEOL, JEM 2100 with an electron acceleration
energy of 200 kV. The samples were ultrasonically dispersed in IPA for 30 min and deposited
on the copper grid using capillary and dried overnight in air. The content of Ni in the catalysts
was determined Inductive coupled plasma (ICP) analysis of the catalyst was carried out on
Perkin Elmer, Optima 2000. The reaction mixture was analyzed by Gas Chromatography (GC-
7890B and GC-MS (Shimadzu, QP-2010, Japan), with HP-5 column which consists of 5%
diphenyl and 95% dimethyl polysiloxane capillary column and FID as a detector. The surface
area of the catalyst was calculated using the Branauer-Emmette-Teller (BET) equation
(micromeritics). X-ray photoelectron spectroscopy (XPS) was performed using an ESCA+
(Omicron Nanotechnology, Germany) with a monochromatized Al-Ka X-ray (hv =1486.7 eV)
as the excitation source (15 kV and 20 mA). The pass energy for the survey spectrum was 50
eV and 20 eV in the case of the short scan. The sample was placed on the copper tape and
degassed in the XPS FEL chamber to minimize the air contamination. A charge neutralizer of
2 keV was used to overcome any charging problem, and the calibration was done using the
adventitious C 1s feature at 284.6 eV as a reference. All the spectra were recorded at 90° of the
X-ray source. 3C solid-state nuclear resonance (NMR) spectroscopy was performed using a
Bruker 11.7 T spectrometer equipped with a triple resonance 2.5 mm solid-state probe head

and an avance III console. All experiments were performed at room temperature



S2. BET analysis of BC and Ni@NC-DC
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Figure S1. (a) BET spectrum of BC and (b) BET spectrum of Ni@NC-DC

S3. HRTEM images of before and after reduction of Ni@NC-DC
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Figure S2. (a-c) HRTEM images before the reduction of Ni@NC-DC, (d-f) HRTEM

images after the reduction of Ni@NC-DC.



S4. Particle size distribution of Ni@NC-DC catalyst
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Figure S3. The particle size distribution of Ni@NC-DC catalyst.

S5. Activity of the catalyst

The activity of the catalyst was obtained by using the following formula
mmoles of the desired product formed

Catalytic activity = - —
gramof active catalyst X reaction time inh mmol'g-'h'!

S6. GC-Mass spectrum of products
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Figure S4.1. Mass spectrum of 4-aminobenzaldehyde
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Figure S4.2. Mass spectrum of 1-(furan-2-yl)-N-phenylmethanimine
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Figure S4.3. Mass spectrum of 1-(furan-2-yl)-N-(p-toly)methanimine
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Figure S4.4. Mass spectrum of N-(4-ethylphenyl)-1-(furan-2-yl)methanimine
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Figure S4.5. Mass spectrum of 2-methoxy-5-((phenylimino)methylphenol
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Figure S4.6. Mass spectrum of 1-(4-nitrophenyl)-N-pnenylmethanimine
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Figure S4.7. Mass spectrum of 5-(benzylideneamino)furan-2-yl)methanol
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Figure S4.8. Mass spectrum of N-(5-methylfuran-2-yl)-1-phenylmethanimine
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Figure S4.9. Mass spectrum of N-Isopropylaniline
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Figure S4.10. Mass spectrum of N-methylaniline




100

194
H
N D
,
N
&
77 %0
39 I 104 iP5
n ¥ 1|| \i £ \‘ll.‘| .l \|. 116 L I; pe 22 240 256 272 290 301 313 3% 346 358 388 404 430439 450 470 481 500
I I I I 1 1 | ! 1 1 1 1 1 1 I I 1 1 1 1 ) ) 1 1 1 1 1 1 1 W I | I I I ) 1 L) “1‘ 1 1 1 1 I 1 1
0 40 80 120 160 200 240 280 320 360 400 440 480
m/z
Figure S4.11. Mass spectrum of 2-phenyl benzimidazole
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Figure S4.12. Mass spectrum of 2-furan benzimidazole
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Figure S4.13. Mass spectrum of N-1-diphenylmethanimine
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Figure S4.14. Mass spectrum of 2-(5-methylfuran-2-yl)-1H-benzo[d]imidazole
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Figure S4.15. Mass spectrum of (5-(1H-benzo[d]imidazol-2-yl)furan-2-yl)methanol
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Figure S4.16. Mass spectrum of 1H-indazole
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Figure S4.17. Mass spectrum of 2-methyl-1H-benzo[d]imidazole
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Figure S4.17. Mass spectrum of 2-methyl-1H-benzo[d]imidazole

S7. Recyclability studies of Ni@NC-DC catalyst
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Figure S5. Recyclability studies of Ni@NC-DC catalyst.




S8. SEM analysis of catalyst before and after reaction
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Figure S6. SEM elemental mapping of Fresh catalyst; Distribution of (a) Ni, N, C and O;
(b) Nickel; (c) Nitrogen; (d) Carbon; (e) Oxygen and (f) SEM-EDAX.
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Figure S7. SEM elemental mapping of the catalyst after 5 cycle; Distribution of (a) Ni, N, C and
O; (b) Nickel; (c) Nitrogen; (d) Carbon; (e) Oxygen and (f) SEM-EDAX.
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S9. Comparison table for reductive amination using heterogeneous catalyst

Table S1. Comparison of different catalysts for reductive hydrogenation between nitrobenzene and
benzaldehyde.

Catalyst Solvent Hydrogen Temp. Press. Time Conv. Selec. (%) Ref.
source €O (Mpa) (h) (%)
2° Imine
Amine
Colloid Pd NPs MeOH H, 25 NS 6 NS 88 NS 1
Mos;S, THF @ H, 70 2 18 >99 99 0 2
Mo;S,4 THF® H, 70 2 18 50 0 30 3
Fe+PdC H,O H,0:CO, 80 - 10 86 33 50 4
Fe+FeCl, H,O H,0:CO, 80 - 10 94 NS 93 4
Pd/Fe;0,@C H,O H, 60 NS 8 99 92 NS 5
Au@TiO, H,O HCOOH 80 - 3 >99 97 1 6
MoS, EtOH H, 120 2 5 100 85.2 0.7 7
MoS, H,O H, 120 2 5 62.1 2.3 74.9 7
Pd@ZSM-5 H,O NaBH,4 25 - 20 min 100 98 NS 8
AgPd@C;N,4 H,O HCOOH 20 - 20 >99 >99 NS 9
Co,Rh,/C MeOH H, 25 0.1 24 100 93 - 10
Co-Nx/C-800-AT EtAc HCOOH 150 - 10 100 96 NS 11
Co@CN-600-AT THF HCOOH 190 - 15 100 96.1 NS 12
Co@CN-600-AT THF HCOOH 110 - 10 64.5 9.4 83.9 12
Co@NSC THF:H,0 HCOOH 170 - 6 100 94.9 NS 13
Co-SiCN¢ EtOH:H,0 H, 110 5 24 NS NS 82 14
CoOx@NC-800  THF:H,0 H, 110 5 24 NS NS 88 15
Ni@NC-700-1.5 THF:H,0 H, 2 4 >99 46.26 344 16
Ni@NC-600-1.5 THF: H,0 H, 2 4 >99 97.96 2.04 16
Ni@NC-DC THF:H,0O H, 100 20 4 100 95 95 This
work

awater in ppm ®"Molecular Sieves ¢ Triethylamine as additive. NS: Not specified

12



References.

1.

10.

B. Sreedhar, P. Surendra Reddy, and D. Keerthi Devi, Direct One-Pot Reductive
Amination of Aldehydes with Nitroarenes in a Domino Fashion: Catalysis by Gum-
Acacia-Stabilized Palladium Nanoparticles. J. Org. Chem. 2009, 74, 22

A. L. Nuzhdin, E. A. Artiukha, G. A. Bukhtiyarova, E. A. Derevyannikova, V. I.
Bukhtiyarov, Synthesis of secondary amines by reductive amination of aldehydes with
nitroarenes over supported copper catalysts in a flow reactor. Catal. Commun., 2017,

102, 108-113.

. E. Pedrajas, 1. Sorribes, K. Junge, M. Beller, R. Llusar, Selective reductive amination

of aldehydes from nitro compounds catalyzed by molybdenum sulfide clusters. Green
Chem., 2017, 19(16), 3764-3768

R. Ma, Y-B Zhou, L.-N. He, Carbon dioxide promoted reductive amination of
aldehydes in water mediated by iron powder and catalytic palladium on activated
carbon. Catal. Today, 2016, 274, 35-39

Xingchun Zhou, Xinzhe Li, Lixin Jiao, Hongfei Huo and Rong Li, Programmed
Synthesis Palladium Supported on Fe;O4@C: An Efficient and Heterogeneous
Recyclable Catalyst for One-Pot Reductive Amination of Aldehydes with Nitroarenes
in Aqueous Reaction Medium. Catal Lett, 2015, 145, 1591-1599

Q. Zhang, S.-S. Li, M.-M. Zhu, Y.-M. Liu, H-Y He and Y Cao, Direct reductive
amination of aldehydes with nitroarenes using bio-renewable formic acid as a hydrogen
source, Green Chem., 2016, 18, 2507

Y. Zhang, Y. Gao, S. Yao, S. Li, H. Asakura, K. Teramura, H. Wang, and D Ma,
Sublimation-Induced Sulfur Vacancies in MoS, Catalyst for One-Pot Synthesis of
Secondary Amines, ACS Catal. 2019, 9, 7967-7975

Roozbeh Javad Kalbasi and Omid Mazaheri Facile one-pot tandem reductive amination
of aldehydes from nitroarenes over a hierarchical ZSM-5 zeolite containing palladium
Nanoparticles NewJ.Chem., 2016, 40, 9627

E. A. Artiukha, A. L. Nuzhdin, G. A. Bukhtiyarova, V. 1. Bukhtiyarov Flow synthesis
of secondary amines over Ag/Al,O; catalyst by one-pot reductive amination of
aldehydes with nitroarenes. RSC Adv., 2017, 7, 45856

S. Ergen, B. Nisanci, O. Metin, One-pot reductive amination of aldehydes with
nitroarenes using formic acid as the hydrogen donor and mesoporous graphitic carbon
nitride supported AgPd alloy nanoparticles as the heterogeneous catalyst, New. J.
Chem., 2018, 42, 10000

13



11.I. Choi, S. Chun, Y. K. Chung, Bimetallic Cobalt—Rhodium Nanoparticle-Catalyzed
Reductive Amination of Aldehydes with Nitroarenes under Atmospheric Hydrogen. J.
Org. Chem. 2017, 82, 12771-12777

12. P. Zhou, Z. Zhang, One-pot reductive amination of carbonyl compounds with nitro
compounds over the Co-Nx catalyst by transfer hydrogenation, ChemSusChem 2017,
10, 1892

13. L Jiang, P. Zhou, Z. Zhang, S. Jin, and Q. Chi Synthesis of Secondary Amines from
One-Pot Reductive Amination with Formic Acid as the Hydrogen Donor over an Acid-
Resistant Cobalt Catalyst, Ind. Eng. Chem. Res. 2017, 56, 12556-12565.

14. H. Guo, B. Wang, P. Qiu, R. Gao, M. Sun and L. Chen, N, S-Co doped Carbon Shells
Embedded with Ultrafine Co NPs for Reductive Amination with Formic Acid. ACS
Sustainable Chem. Eng. 2019, 7, 8876-8884.

15. T. Schwob and R. A. Kempe, A Reusable Co Catalyst for the Selective Hydrogenation
of Functionalized Nitroarenes and the Direct Synthesis of Imines and Benzimidazoles
from Nitroarenes and Aldehydes. Angew. Chem. Int. Ed. 2016, 55, 15175-15179.

16. T. Song, P. Ren, Y. Duan, Z. Wang, X. Chen and Y. Yang, Cobalt nanocomposites on
N-doped hierarchical porous carbon for highly selective formation of anilines and

imines from nitroarenes. Green Chem., 2018, 20, 4629-4637.

14



