Electronic Supplementary Material (ESI) for New Journal of Chemistry

# **Electronic Supplementary Information (ESI)**

## Monomeric Vanadium Oxide: Very Efficient Species for Promoting Aerobic Oxidative Dehydrogenation of N-Heterocycles

Zhenbing Xie,<sup>[a,b]</sup> Bingfeng Chen,<sup>\*[a]</sup> Lirong Zheng,<sup>[c]</sup> Fangfang Peng,<sup>[a]</sup> Huizhen Liu<sup>\*[a,b]</sup> and Buxing Han<sup>\*[a,b]</sup>

<sup>a</sup> Z. B. Xie, Dr. B. F. Chen\*, F. F. Peng, Prof. H. Z. Liu\*, Prof. B. X. Han\*.

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of colloidal and interface and

thermodynamics, Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190 (P, R, China)

E-mail: chenbf@iccas.ac.cn; Liuhz@iccas.ac.cn; hanbx@iccas.ac.cn.

<sup>b</sup> Z. B. Xie, Prof. H. Z. Liu\*, Prof. B. X. Han\*.

School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 (P. R. China)

° Dr. L. R. Zheng

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 (P. R. China)

#### **Table of Contents:**

#### 1. Supporting figures and tables

- Fig. S1 SEM images of NbOy@C before thermal-treatment.
- Fig. S2 Raman spectra of the VO<sub>x</sub>-NbO<sub>y</sub>@C materials after thermal-treatment at different temperatures.
- Fig. S3 XRD patterns of NbOy@C (a) and VOx-NbOy@C (b) before thermal treatment.
- Fig. S4 XRD patterns of the as-prepared VO<sub>x</sub>-NbO<sub>y</sub>@C-800 and the commercial metal oxides.
- Fig. S5 XPS curve-fitting of Nb 3d photoelectronic peaks of VO<sub>x</sub>-NbO<sub>y</sub>@C catalysts after thermaltreatment at different temperatures.
- Fig. S6 N<sub>2</sub> adsorption-desorption isotherms and the corresponding pore size distribution curves of VO<sub>x</sub>-NbO<sub>y</sub>@C-800 before (a) and after thermal-treatment (b).
- Fig. S7. V K-edge XANES spectra of  $VO_x$ -Nb $O_y@C$  catalysts and the standard V foil,  $VO_2$  and  $V_2O_5$  reference.
- Fig. S8 XRD patterns of the fresh and reused VO<sub>x</sub>-NbO<sub>y</sub>@C catalysts.
- Fig. S9 a) XPS survey spectra of the fresh and recycled VO<sub>x</sub>-NbO<sub>y</sub>@C catalysts; b) high resolution V 2p<sub>3/2</sub> XPS spectra of the fresh and recycled VO<sub>x</sub>-NbO<sub>y</sub>@C catalysts; c) high resolution Nb 3d XPS spectra of the fresh catalyst; d) high resolution Nb 3d XPS spectra of the recycled catalyst.
- Table S1 XPS peak parameters and area% of different components in Nb 3d region of  $VO_x$ -Nb $O_y@C$ .
- Table S2 Optimization of reaction conditions of oxidative dehydrogenation of tetrahydroquinoline with VO<sub>x</sub>-NbO<sub>y</sub>@C.

Table S3. The effect of reaction time on the catalytic performance of the  $VO_x$ -NbO<sub>y</sub>@C.

#### 2. General Analysis Data for products.

#### 3. NMR Spectra

1. Supporting figures and tables



Fig. S1 SEM images of NbO<sub>y</sub>@C before thermal-treatment.



Fig. S2 Raman spectra of the  $VO_x$ -Nb $O_y@C$  materials after thermal-treatment at different temperatures.

The relative intensity of the D and G bonds  $(I_D/I_G)$  is an indicator of the disorder degree in a graphite structure. The  $I_D/I_G$  ratio decreased with elevating the thermal-treatment temperature, indicating that the introduction of vanadium and niobium resulted in various defects in the carbon framework.



Fig. S3 XRD patterns of NbOy@C (a) and VOx-NbOy@C (b) before thermal treatment.



Fig. S4 XRD patterns of the as-prepared  $VO_x$ -NbO<sub>y</sub>@C-800 and the commercial metal oxides.



Fig. S5 XPS curve-fitting of Nb 3d photoelectronic peaks of VO<sub>x</sub>-NbO<sub>y</sub>@C catalysts after thermal-treatment at different temperatures.

Table S1 XPS peak parameters and area% of different components in Nb 3d region of VO<sub>x</sub>-

| Sample   | VO <sub>x</sub> -NbO <sub>y</sub> @C-600 |                  | VO <sub>x</sub> -NbO <sub>y</sub> @C-700 |                  | VO <sub>x</sub> -NbO <sub>y</sub> @C-800 |                  |                  |                  |                  |
|----------|------------------------------------------|------------------|------------------------------------------|------------------|------------------------------------------|------------------|------------------|------------------|------------------|
| Atom% of | 17.8                                     |                  | 16.9                                     |                  | 14.5                                     |                  |                  |                  |                  |
| Nd 3d    |                                          |                  |                                          |                  |                                          |                  |                  |                  |                  |
| Chemical | Nb <sup>5+</sup>                         | Nb <sup>4+</sup> | Nb <sup>3+</sup>                         | Nb <sup>5+</sup> | Nb <sup>4+</sup>                         | Nb <sup>3+</sup> | Nb <sup>5+</sup> | Nb <sup>4+</sup> | Nb <sup>3+</sup> |
| state    |                                          |                  |                                          |                  |                                          |                  |                  |                  |                  |
| Peak     | 207.30                                   | 206.80           | -                                        | 207.45           | 206.90                                   | 205.72           | 207.35           | 206.85           | 205.80           |
| position |                                          |                  |                                          |                  |                                          |                  |                  |                  |                  |
| (eV)     |                                          |                  |                                          |                  |                                          |                  |                  |                  |                  |
| FWHM     | 1.12                                     | 1.44             | -                                        | 1.12             | 0.87                                     | 1.09             | 1.19             | 0.92             | 1.08             |
| Area %   | 95.00                                    | 4.9              | -                                        | 91.7             | 6.8                                      | 1.5              | 84.2             | 10.7             | 5.1              |

NbO<sub>v</sub>@C



Fig. S6  $N_2$  adsorption-desorption isotherms and the corresponding pore size distribution curves of  $VO_x$ -NbO<sub>y</sub>@C-800 before (a) and after thermal-treatment (b).



Fig. S7. V K-edge XANES spectra of  $VO_x$ -Nb $O_y@C$  catalysts and the standard V foil,  $VO_2$  and  $V_2O_5$  reference.

| Entry          | Solvent                | Temp. (°C)/ | Con. (%) | Yield. (%) <sup>b</sup> |
|----------------|------------------------|-------------|----------|-------------------------|
|                |                        | time (h)    |          |                         |
| 1              | DMSO                   | 120 / 12    | 100      | 76.4                    |
| 2              | DMSO                   | 120 / 16    | 100      | 91.8                    |
| 3°             | DMSO                   | 120 / 12    | 100      | 71.8                    |
| 4 <sup>d</sup> | DMSO                   | 120 / 12    | 100      | 74.6                    |
| 5 <sup>e</sup> | DMSO                   | 120 / 12    | 100      | 73.1                    |
| 6 <sup>f</sup> | DMSO/H <sub>2</sub> O  | 120 / 16    | 100      | 92.5                    |
| 7 <sup>g</sup> | DMSO/H <sub>2</sub> O  | 120 / 16    | 100      | 61.7                    |
| 8 <sup>h</sup> | DMSO/H <sub>2</sub> O  | 120 / 16    | 100      | 77.8                    |
| 6              | 1,3,5-Trimethylbenzene | 120 / 16    | 77.4     | 39.2                    |
| 7              | Benzotrifluoride       | 120 / 16    | 76.9     | 37.5                    |
| 8              | PhCN                   | 120 / 16    | 100      | 58.3                    |
| 9              | CH <sub>3</sub> CN     | 120 / 16    | 100      | 75.3                    |
| 10             | dioxane                | 120 / 16    | 100      | 50.3                    |
| 11             | DMF                    | 120 / 16    | 100      | 52.0                    |
| 12             | t-BuOH                 | 120 / 16    | 77.0     | 65.9                    |

 Table S2 Optimization of reaction conditions of oxidative dehydrogenation of tetrahydroquinoline

 with VOx-NbOv@C.<sup>a</sup>

[a] Reaction condition: 1, 2, 3, 4-tetrahydroquinoline (0.5 mmol), VO<sub>X</sub>-NbO<sub>y</sub>@C-800 (50 mg), solvent (2.0 mL), O<sub>2</sub> (0.5 MPa); [b] The yields were obtained by GC using chlorobenzene as internal standard; [c] VO<sub>X</sub>-NbO<sub>y</sub>@C-800 (40 mg); [d] O<sub>2</sub> (1 MPa); [e] O<sub>2</sub> (0.25 MPa); [f] DMSO 1.5 mL, H<sub>2</sub>O 0.5 mL; [g] DMSO 1.75 mL, H<sub>2</sub>O 0.25 mL; [h] DMSO 1.0 mL, H<sub>2</sub>O 1.0 mL.

|       |                       | 5 1      |          | , ,                     |
|-------|-----------------------|----------|----------|-------------------------|
| Entry | Solvent               | time (h) | Con. (%) | Yield. (%) <sup>b</sup> |
| 1     | DMSO/H <sub>2</sub> O | 4        | 67.1     | 34.6                    |
| 2     | DMSO/H <sub>2</sub> O | 8        | 83.0     | 56.5                    |
| 3     | DMSO/H <sub>2</sub> O | 12       | 100      | 61.5                    |
| 4     | DMSO/H <sub>2</sub> O | 16       | 100      | 92.5                    |

Table S3. The effect of reaction time on the catalytic performance of the VOx-NbOy@C.

Reaction condition: 1,2,3,4-tetrahydroquinoline (0.5 mmol), catalyst (50 mg), DMSO (1.5 mL), H<sub>2</sub>O (0.5 mL), O<sub>2</sub> (0.5 MPa), 120 °C



Fig. S8 XRD patterns of the fresh and reused VO<sub>x</sub>-NbO<sub>y</sub>@C catalysts.



**Fig. S9** a) XPS survey spectra of the fresh and recycled  $VO_x$ -NbO<sub>y</sub>@C catalysts; b) high resolution V  $2p_{3/2}$  XPS spectra of the fresh and recycled  $VO_x$ -NbO<sub>y</sub>@C catalysts; c) high resolution Nb 3d XPS spectra of the fresh catalyst; d) high resolution Nb 3d XPS spectra of the recycled catalyst.

Table S4. Comparison of the aerobic oxidative dehydrogenation of N-heterocycles of reported

| Catalyst                             | Т    | Time  | P <sub>O2</sub> | Solvent             | Yield(%)        | Refs. |
|--------------------------------------|------|-------|-----------------|---------------------|-----------------|-------|
|                                      | (°C) | (h)   | (MPa)           |                     | [X Substrates]  |       |
| VO <sub>X</sub> -NbO <sub>y</sub> @C | 120  | 16    | 0.5             | H <sub>2</sub> O+   | 53.9~93.6%      | This  |
|                                      |      |       |                 | DMSO                | [12 Substrates] | work  |
| FeOx@NGr-C                           | 100  | 12    | 1.5             | heptane             | 51~89%          | 1     |
|                                      |      |       | MPa             |                     | [23 Substrates] |       |
|                                      |      |       | (Air)           |                     |                 |       |
| Ni <sub>2</sub> Mn-LDH               | 120  | 2.5-9 | 0.1             | mesitylene          | 31~93%          | 2     |
|                                      |      |       |                 |                     | [24 Substrates] |       |
| manganese oxide                      | 80   | 6     | 0.1             | dimethyl            | 38~99%          | 3     |
| molecular sieve                      |      |       |                 | carbonate           | [29 Substrates] |       |
| (OMS-2)                              |      |       |                 |                     |                 |       |
| Co@N-doped                           | 80   | 6     | 0.1             | МеОН                | 76~98%          | 4     |
| graphene shells                      |      |       |                 | $+K_2CO_3$          | [5 Substrates]  |       |
| mesoporous                           | 130  | 20    | 0.1             | DMF                 | 69~99%          | 5     |
| manganese                            |      |       |                 |                     | [8 Substrates]  |       |
| oxide                                |      |       |                 |                     |                 |       |
| Co NC/N-C                            | 50   | 12    | 0.1             | МеОН                | 28.1~99.9%      | 6     |
| catalyst                             |      |       | (Air)           |                     | [12 Substrates] |       |
| palladium                            | RT   | 18    | TBHP            | H <sub>2</sub> O    | 39~96%          | 7     |
| nanocatalyst                         |      |       | (8eq)           |                     | [17 Substrates] |       |
| stabilized by                        |      |       |                 |                     |                 |       |
| carbon metal                         |      |       |                 |                     |                 |       |
| covalent bonds                       |      |       |                 |                     |                 |       |
| polymaleimide                        | 120  | 24    | 0.1             | MeOH+H <sub>2</sub> | 62~96%          | 8     |
|                                      |      |       |                 | О                   | [23 Substrates] |       |
| boron carbon                         | RT   | 12    | visible-        | H <sub>2</sub> O    | 41~95%          | 9     |

catalysts.

| nitride | light     | [14 Substrates] |  |
|---------|-----------|-----------------|--|
| (h-BCN) | irradiati |                 |  |
|         | on        |                 |  |

#### **References:**

- Cui, X. J.; Li, Y. H.; Bachmann, S.; Scalone, M.; Surkus, A. E.; Junge, K.; Topf, C.; Beller, M., J. Am. Chem. Soc. 2015, 137, 10652-10658.
- Zhou, W. Y.; Tao, Q. Y.; Sun, F. A.; Cao, X. B.; Qian, J. F.; Xu, J.; He, M. Y.; Chen, Q.; Xiao, J. L., *J. Catal.* 2018, 361, 1-11.
- Bi, X. R.; Tang, T.; Meng, X.; Gou, M. X.; Liu, X.; Zhao, P. Q., Catal. Sci. Technol. 2020, 10, 360-371.
- Li, J. L.; Liu, G. L.; Long, X. D.; Gao, G.; Wu, J.; Li, F. W., J. Catal. 2017, 355, 53-62.
- Mullick, K.; Biswas, S.; Angeles-Boza, A. M.; Suib, S. L., Chem. Commun. 2017, 53, 2256-2259.
- Wu, Y.; Chen, Z.; Cheong, W. C.; Zhang, C.; Zheng, L. R.; Yan, W. S.; Yu, R.; Chen, C.; Li, Y. D., *Chem. Sci.* 2019, 10, 5345-5352.
- 7. Sun, X. T.; Zhu, J.; Xia, Y. T.; Wu, L., ChemCatChem 2017, 9, 2463-2466.
- Zhang, Y. J.; Pang, S. F.; Wei, Z. H.; Jiao, H. J.; Dai, X. C.; Wang, H.; Shi, F., Nat. Commun. 2018, 9, 1465.
- Zheng, M. F.; Shi, J. L.; Yuan, T.; Wang, X. C., Angew. Chem. Int. Ed. 2018, 57, 5487-5491.

#### 2. General Analysis Data for products.



Quinoline, colorless oil. Yield (60.7 mg, 92.5%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.93 (dd, J = 4.2, 1.6 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.76 – 7.67 (m, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.55, 148.42, 136.25, 129.63, 129.59, 128.46, 127.94, 126.71, 121.24.



6-Methylquinoline, colorless oil. Yield (67 mg, 93.6%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.84 (d, J = 3.8 Hz, 1H), 8.03 (dd, J = 25.3, 8.4 Hz, 2H), 7.59 – 7.39 (m, 2H), 7.33 (dd, J = 21.9, 17.6 Hz, 1H), 2.54 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 149.62, 146.98, 136.52, 135.52, 131.88, 129.18, 128.44, 126.70, 121.19, 21.69.



6-Hydroxyquinoline, white solid. Yield (49.4mg, 65.9%). <sup>1</sup>H NMR (400 MHz, DMSO) δ 9.99 (s, 1H), 8.65 (dd, J = 4.1, 1.5 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 9.1 Hz, 1H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.31 (dd, J = 9.1, 2.7 Hz, 1H), 7.13 (d, J = 2.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, DMSO) δ 155.43, 147.10, 143.04, 134.09, 130.38, 129.28, 121.92, 121.37, 108.29.



6-Methoxyquinoline, yellow oil. Yield (45.2 mg, 53.9%).<sup>1</sup>H NMR (400 MHz, CDCl3) δ 8.77 (s, 1H), 8.02 (dd, J = 18.1, 8.7 Hz, 2H), 7.36 (t, J = 9.4 Hz, 2H), 7.07 (s, 1H), 3.93 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl3) δ 157.86, 148.08, 144.58, 134.90, 131.01, 129.44, 122.40, 121.50, 105.24, 77.48, 77.16, 76.84, 55.66.



7-Nitroquinoline, yellow solid. Yield (76 mg, 87.3%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.09 (dd, J = 4.1, 1.4 Hz, 1H), 9.02 (d, J = 2.0 Hz, 1H), 8.34 (dd, J = 9.0, 2.2 Hz, 1H), 8.28 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 7.60 (dd, J = 8.4, 4.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.84, 148.28, 147.34, 136.06, 131.53, 129.62, 126.02, 124.07, 120.28.



6-Bromoquinoline, colorless oil. Yield (82 mg, 78.8%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.92 (d, J = 3.5 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 8.02 – 7.90 (m, 2H), 7.78 (dd, J = 9.0, 2.0 Hz, 1H), 7.42 (dd, J = 8.3, 4.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 150.85, 146.94, 135.19, 133.08, 131.33, 129.92, 129.48, 122.02, 120.59.



6-Fluoroquinoline, yellow oil. Yield (45.8mg, 61.9%). <sup>1</sup>H NMR (400 MHz, CDCl3) δ 8.89 (dd, J = 4.1, 1.3 Hz, 1H), 8.16 – 8.05 (m, 2H), 7.49 (ddd, J = 9.1, 8.4, 2.8 Hz, 1H), 7.43 (ddd, J = 6.5, 5.3, 3.5 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl3) δ 161.78 (s), 159.32 (s), 149.85 (d, J = 2.8 Hz), 145.56 (s), 135.56 (d, J = 5.4 Hz), 132.15 (d, J = 9.2 Hz), 129.04 (d, J = 10.1 Hz), 121.93 (s), 119.91 (d, J = 25.8 Hz), 110.84 (d, J = 21.6 Hz).



2-Methylquinoline, yellow oil. Yield (53.4mg, 74.2%). <sup>1</sup>H NMR (400 MHz, CDCl3) δ 8.04 (s, 1H), 7.79 (t, J = 9.5 Hz, 1H), 7.72 – 7.62 (m, 1H), 7.52 – 7.39 (m, 1H), 7.33 – 7.23 (m, 1H), 2.75 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl3) δ 159.15, 148.03, 136.31, 129.56, 128.79, 127.63, 126.64, 125.79 – 125.64, 122.15, 25.53.



Isoquinoline, colorless oil. Yield (58 mg, 89.8%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.26 (s, 1H), 8.53 (d, J = 5.8 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.73 – 7.49 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.60, 143.06, 135.84, 130.41, 128.75, 127.69, 127.31, 126.53, 120.53.



Indole, colorless oil. Yield (36.4 mg, 62.1%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.13 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.19 (t, J = 6.5 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.56 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 135.93, 128.00, 124.23, 122.12, 120.87, 119.95, 111.14, 102.78.



6-Nitroindole, yellow solid. Yield (70 mg, 86.4%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.70 (s, 1H), 8.39 (s, 1H), 8.04 (dd, J = 8.8, 1.9 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.51 (t, J = 2.7 Hz, 1H), 6.68 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.44, 134.41, 132.95, 130.20, 120.76, 115.53, 108.23, 103.75.



Quinoxaline, colorless oil. Yield (52 mg, 79.9%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.86 (s, 2H), 8.28 – 7.98 (m, 2H), 7.84 – 7.65 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 145.14, 143.22, 130.24, 129.68.

### 3. NMR Spectra









210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)







210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)







