Supporting Information

NH₃ absorption in Brønsted acidic imidazolium- and ammonium-based ionic liquids

Takashi Makino* and Mitsuhiro Kanakubo

National Institute of Advanced Industrial Science and Technology, 4-2-1 Nigatake, Miyagino-

ku, Sendai 983-8551, Japan

To whom correspondence: makino.t@aist.go.jp (T.M.)

T/K	$lpha_1$	$c_1 / \text{mol dm}^{-3}$	x_1	
$[\text{emim}][\text{Tf}_2\text{N}], p_1 = 0.101 \text{ MPa}, \text{run } 1$				
283.15	0.568	2.04	0.362	
298.15	0.335	1.23	0.251	
313.14	0.235	0.868	0.191	
333.15	0.142	0.518	0.124	
	[emim][T	f_2N], $p_1 = 0.101$ MPa, run 2		
298.15	0.337	1.26	0.252	
313.15	0.215	0.808	0.177	
313.15	0.215	0.806	0.177	
333.15	0.118	0.118 0.441		
353.15	0.053	0.196	0.050	
	[emim][FAP], $p_1 = 0.101$ MPa		
298.15	0.491	1.41	0.329	
313.15	0.353	1.02	0.261	
313.15	0.338	0.989	0.253	
333.16	0.235	0.685	0.190	
353.15	0.177	0.518	0.150	
[emim][TfO], $p_1 = 0.101$ MPa				
298.15	0.486	2.40	0.327	
313.15	0.345	1.75	0.256	
333.15	0.210	1.05	0.174	
353.15	0.144	0.732	0.126	
[2OHmim][Tf ₂ N], $p_1 = 0.101$ MPa				
298.15	1.343	4.64	0.573	

Table S1. NH₃ solubilities per mole of IL α_1 , molarities of NH₃ c_1 , and mole fractions of NH₃ x_1 in the present ILs.^{a)}

313.15	1.067	3.73	0.51 ₆	
313.16	1.114	3.90	0.527	
333.15	0.755	2.69	0.430	
353.15	0.526	1.89	0.345	
	[4SO ₃ Hmim][Tf ₂]	N], $p_1 = 0.101$ MPa		
298.15	2.228	6.02	0.690	
313.15	1.922	5.37	0.65 ₈	
313.15	1.988	5.56	0.665	
333.15	1.530	4.43	0.605	
353.15	1.308	3.78	0.567	
	[4SO ₃ Hmim][Tf ₂ N	N], $p_1 = 0.0101$ MPa		
298.15	$1.02_6^{a)}$	3.17 ^{a)}	$0.50_7^{a)}$	
313.15	1.155	3.36	0.536	
333.15	1.091	3.16	0.522	
353.15	1.026	2.98	0.50 ₆	
$[4SO_3Hmim][HSO_4], p_1 = 0.0101 \text{ MPa}$				
333.15	0.833	3.58	0.454	
353.15	0.527	2.32	0.345	
$[N_{1114}][Tf_2N], p_1 = 0.101 MPa$				
313.15	0.258	0.857	0.205	
313.15	0.257	0.850	0.204	
333.15	0.165	0.549	0.142	
353.15	0.103	0.334	0.093	
$[N_{111,2OH}][Tf_2N], p_1 = 0.101$ MPa, run 1				
283.47	1.445	5.01	0.591	
298.15	1.153	4.04	0.53 ₆	
313.15	0.856	3.06	0.461	
333.15	0.586	2.17	0.369	

333.15	0.617	2.28	0.381	
$[N_{111,2OH}][Tf_2N], p_1 = 0.101$ MPa, run 2				
313.15	0.871	3.07	0.46 ₆	
313.15	0.890	3.15	0.471	
353.15	0.432	1.60	0.302	
$[N_{111,1COOH}][Tf_2N], p_1 = 0.101 \text{ MPa}$				
298.15	2.420	7.71	0.708	
313.15	2.127	7.01	0.680	
333.15	1.71 ₁	5.82	0.631	
353.15	1.480	5.06	0.597	
353.15	1.429	4.96	0.588	

a) The standard uncertainties for *T* and p_1 were u(T)=0.02 K, $u(p_1)=0.002$ MPa. The uncertainties for α_1 , x_1 , and c_1 were $u(\alpha_1) = 0.02$ or $u_r(\alpha_1) = 3.4$ %, $u(x_1) = 0.01$ or $u_r(x_1) = 3.4$ %, and $u(c_1) = 0.06$ or $u_r(c_1) = 3.5$ %.

S/ nnm (21	(12)	
o / ppin ('H)	$\delta / 1$	ppm (¹³ (C)
	[emi	m]+		
a 7.7	a	1	137	$5 \qquad 1 \qquad 4$
b 7.4	e N O	2	130	N N 6
c 7.3	c b	3	129	2 3
d 4.1		4	51	
e 3.8		5	38	
f 1.5		6	18	
	[20Hr	nim]+		
a 7.8		1	138	
b 7.3	f ^a d g	2	130	6 <u>1</u> 5 g
c 7.3	N N OH	3	130	N N OH
d 4.2	c b	4	66	$\frac{1}{3}$ 2
e 4.1		5	54	
f 3.8		6	38	
g 0.9				
	[4SO ₃ H	[mim] ⁻	+	
a 7.7	fa ehd	1	137 _e	$1 \qquad 5 \qquad 8$
b 7.4	N N SO ₃ H	2	130	N N SO ₃ H
c 7.3	c b	3	130	3 2
d 4.6		4	57	
e 4.0		5	54	
f 3.8		6	38	
g 3.0		7	36	
h 1.9		8	27	
i 1.6				
	[N ₁₁	14]+		
a 3.0		1	74	

Table S2. ¹H and ¹³C chemical shifts calculated using a Gaussian 09 with B3LYP/6-311+G(2d,p) basis set.

		NH ₃	
а	-0.22		
		$\mathrm{NH_4^+}$	
а	4.8		

Fig. S1 Decrements $\Delta \alpha_1$ of α_1 from 298.15 K by heating. $\Delta \alpha_1$ is defined as the difference between the NH₃ solubilities α_1 at certain temperature and 298.15 K. Open triangle, [emim][Tf₂N]; filled circle, [emim][TfO]; open circle, [emim][FAP]; open diamond, [N₁₁₁₄][Tf₂N]; open square, [2OHmim][Tf₂N]; filled square, [4SO₃Hmim][Tf₂N]; gray diamond, [N_{111,2OH}][Tf₂N]; filled diamond, [N_{111,1COOH}][Tf₂N].

Fig. S2 ¹H NMR spectra for the neat ILs at 313.2 K. (a), [emim][Tf₂N] (vertically enlarged); (b), [emim][FAP] (enlarged); (c), [emim][TfO] (enlarged); (d), [2OHmim][Tf₂N] (enlarged); (e), [4SO₃Hmim][Tf₂N]; (f), [4SO₃Hmim][HSO₄] (333.2 K); (g), [N₁₁₁₄][Tf₂N]; (h), [N_{111,2OH}][Tf₂N] (333.2 K); (i), [N_{111,1COOH}][Tf₂N] (343.2 K). The peak of benzene- d_6 was referenced to 7.2 ppm.

Fig. S3 ¹³C NMR spectra for the neat ILs at 313.2 K. (a), [emim][Tf₂N] (vertically enlarged); (b), [emim][FAP] (enlarged); (c), [emim][TfO] (enlarged); (d), [2OHmim][Tf₂N] (enlarged); (e), [4SO₃Hmim][Tf₂N]; (f), [4SO₃Hmim][HSO₄] (333.2 K); (g), [N₁₁₁₄][Tf₂N]; (h), [N_{111,2OH}][Tf₂N] (333.2 K); (i), [N_{111,1COOH}][Tf₂N] (343.2 K). The peak of benzene- d_6 was referenced to 128 ppm.

Fig. S4 ¹³C NMR spectra for the NH₃-saturated ILs at 313.2 K. (a), [emim][Tf₂N]; (b), [emim][FAP]; (c), [emim][TfO]; (d), [2OHmim][Tf₂N]; (e1), [4SO₃Hmim][Tf₂N]; (e2), [4SO₃Hmim][Tf₂N] (p_1 =0.0101 MPa); (f), [4SO₃Hmim][HSO₄] (p_1 =0.0101 MPa); (g), [N₁₁₁₄][Tf₂N]; (h), [N_{111,2OH}][Tf₂N]; (i), [N_{111,1COOH}][Tf₂N]. The peak of benzene- d_6 was referenced to 128 ppm.

Fig. S5 Raman spectra (3100-3500 cm $^{-1}$) for the neat ILs at 313.2 K. (a), [emim][Tf₂N]; (b),[emim][FAP]; (c), [emim][TfO]; (d), [2OHmim][Tf₂N]; (e), [4SO₃Hmim][Tf₂N]; (f),[4SO₃Hmim][HSO₄] (333.2 K); (g), [N₁₁₁₄][Tf₂N]; (h), [N_{111,2OH}][Tf₂N] (333.2 K); (i),[N_{111,1COOH}][Tf₂N](343.2 K).

Fig. S6 Raman spectra (200-1100 cm⁻¹) for the ammonium ILs before and after NH₃ absorption at 313.2 K. Solid, NH₃ saturated; gray, neat. (a) [N₁₁₁₄][Tf₂N]; (b), [N_{111,20H}][Tf₂N]; (c), [N_{111,1C00H}][Tf₂N].

Fig. S7 Raman spectra (1100-1900 cm⁻¹) for the nonfunctionalized-imidazolium ILs before and after NH₃ absorption at 313.2 K. Solid, NH₃ saturated; gray, neat. (a) [emim][Tf₂N]; (b), [emim][FAP]; (c), [emim][TfO].

Fig. S8 Raman spectra (200-1100 cm⁻¹) for the nonfunctionalized-imidazolium ILs before and after NH₃ absorption at 313.2 K. Solid, NH₃ saturated; gray, neat. (a) [emim][Tf₂N]; (b), [emim][FAP]; (c), [emim][TfO].

Fig. S9 Raman spectra (2600-3300 cm⁻¹) for the neat ILs at 313.2 K. (a), [emim][Tf₂N]; (b), [emim][FAP]; (c), [emim][TfO]; (d), [2OHmim][Tf₂N]; (e), [4SO₃Hmim][Tf₂N]; (f), [4SO₃Hmim][HSO₄] (333.2 K); (g), [N₁₁₁₄][Tf₂N]; (h), [N_{111,2OH}][Tf₂N] (333.2 K); (i), [N_{111,1COOH}][Tf₂N] (343.2 K).

Fig. S10 Raman spectra (2600-3300 cm⁻¹) for the NH₃-saturated ILs at *p*₁=0.101 MPa and 313.2 K. (a), [emim][Tf₂N]; (b), [emim][FAP]; (c), [emim][TfO]; (d), [2OHmim][Tf₂N]; (e), [4SO₃Hmim][Tf₂N]; (f), [4SO₃Hmim][Tf₂N] (*p*₁=0.0101 MPa); (g), [N₁₁₁₄][Tf₂N]; (h), [N_{111,2OH}][Tf₂N]; (i), [N_{111,1COOH}][Tf₂N].