Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

A High-Sensitive Ratiometric Fluorescent Probe for Imaging Endogenous Hydrogen Sulfide in Cells

Baoshuai An, Hongyi Zhang, Junli Peng, Wei Zhu, Ningning Wei*and Yanru Zhang* Department of Pharmacology and Medicinal Chemistry, Qingdao University School of Pharmacy, Qingdao 266021, China

Fig .S1 (A) UV absorption spectra of QL-NH₂ (10 μ M), QL-N₃ (10 μ M) reacting with hydrogen sulfide (0 μ M, 1 μ M, 4 μ M, 8 μ M). (B) The relationship between I_{605 nm} / I_{525 nm} and the concentration of H₂S.

Fig .S2 (A) After excitation at 385 nm, the pH stability of fluorescence emission intensity of QL-N₃ (10 μ M) and hydrogen sulfide (10 μ M) at 525 nm. (B) After excitation at 385 nm, the pH stability of fluorescence emission intensity of free QL-N₃ (10 μ M) at 525 nm. (C) Fluorescence emission spectrum of QL-N₃ selective test for potential interference factors (Ex: 521 nm). (D) Fluorescence emission spectrum of interference test of QL-N₃ and hydrogen sulfide on potential interference factors (Ex: 385 nm).

