Electronic Supplementary Information

Tetrakis-(N-methyl-4-pyridinium)-Porphyrin as a Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agent

Subhayan Chakraborty^[a], Mainak Das^[a], A. Srinivasan*^[a] and Arindam Ghosh*^[a]

[a] School of Chemical Sciences, National Institute of Science Education and Research (HBNI), At/PO Jatni, Khurdha 752050

*Corresponding authors: srini@niser.ac.in (AS), aringh@niser.ac.in (AG)

Table of contents

- Figure S1: UV absorption spectrum of **TmPyP** in DMSO.
- Figure S2: ¹³C NMR spectrum of **TmPyP** in DMSO-d₆.
- Figure S3-S4: D2O titration of TmPyP in DMSO-d6.
- Figure S5: (a) Overlaid z-spectra for 6.6 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}
- Figure S6: (a) Overlaid z-spectra for 7.0 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}.
- Figure S7: (a) Overlaid z-spectra for 7.2 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}
- Figure S8: (a) Overlaid z-spectra for 7.6 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}
- Figure S9: (a) Overlaid z-spectra for 7.8 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}
- Figure S10: (a) Overlaid z-spectra for 8.0 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}
- Figure S11: (a) Overlaid z-spectra for 8.3 pH with changing saturation power (b) Omega plot for calculation of k_{ex.}
- Figure S12: Overlaid z-spectra for (a) pH 6.6 to 7.4 and (b) pH 7.6 to pH 8.3
- Figure S13: (a) Overlaid z-spectra for **TmPyP** in FBS with changing saturation power(b) Omega plot for calculation of k_{ex.}
- Figure S14: Change in CEST percentage with changing concentration

Figure S1: UV absorption spectrum of **TmPyP** (please refer to compound **2** in Chart 1 in the manuscript for the structure) in DMSO. The characteristic sharp soret band appears at 425 nm along with four weak Q bands at 515nm, 551nm, 588nm and 644nm.

Figure S2: ¹³C-NMR spectrum of **TmPyP** in DMSO-d₆ recorded on 700 MHz. δ 19.99, 48.34, 114.29, 115.27, 124.87, 128.86, 132.79, 139.14, 141.68, 143.75 and 156.86.

Figure S3: 1H NMR of **TmPyP** in DMSO-d₆. The inner core amine NH proton resonates at -3 ppm. Upon addition of 10µl of D₂O the intensity of this proton reduces and almost vanishes after the addition of another 10µl of D₂O. This shows the exchangeable behavior of this inner core NH protons that are highly upfield shifted.

Figure S4: Expanded region around -3 ppm of the spectra shown in Figure S5 indicating the decrease in intensity of the exchangeable proton upon addition of 10 µl and 20 µl of D₂O.

Figure S5 : (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 6.6 (b) Omega plot for exchange rate measurement. The expected linear relationship of $M_z/(M_0-M_z)$ as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ recorded at 9.4 T of 12.5 mM compound in 0.1M Tris-HCl buffer at pH 6.6. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S6: (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 7.0 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ recorded at 9.4 T of 12.5 mM compound in 0.1M Tris-HCl buffer at pH 7.0. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S7: (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 7.2 (b) Omega plot for exchange rate measurement. The expected linear relationship of $M_z/(M_0-M_z)$ as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ recorded at 9.4 T of 12.5 mM compound in 0.1M Tris-HCl buffer at pH 7.2. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S8: (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 7.6 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ recorded at 9.4 T of 12.5 mM compound in 0.1M Tris-HCl buffer at pH 7.6. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S9: (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 7.8 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ recorded at 9.4 T of 12.5 mM compound in 0.1M Tris-HCl buffer at pH 7.8. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S10: (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 8.0 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ recorded at 9.4 T of 12.5 mM compound in 0.1M Tris-HCl buffer at pH 8.0. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S11 : (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for pH 8.3 (b) Omega plot for exchange rate measurement for pH 8.3. The expected linear relationship of $M_z/(M_0-M_z)$ as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10^{-7} was obtained at 9.4 T of 12.5 mM compound in 0.1M Tris-HCI buffer. RF presaturation pulse was applied for 6 s ensuring complete saturation.

Figure S12 : Dependence of CEST effect of TmPyP on pH. (a) Overlaid Z-spectra with pH ranging from 6.7 to 7.4. (b) Overlaid Z-spectra with pH ranging from 7.6 to 8.3. Radiofrequency saturation was applied for 3s with a saturation radiofrequency of 5μ T.

Figure S13 : (a) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 12.5μ T for FBS at 7.4 pH (b) Omega plot for exchange rate measurement. The expected linear relationship of $M_z/(M_0-M_z)$ as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10^{-7} recorded at 9.4 T of 12.5 mM TmPyP in Foetal bovine serum at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S14: CEST contrast of **TmPyP** with varying concentration at pH 7.4 with a saturation field strength of 5μ T. At 5 mM concentration **TmPyP** produced 6% CEST percentage.