Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Monoterpenoid coumarins and monoterpenoid

phenylpropanoids from the root barks of Ailanthus altissima

Zhi-Kang Duan^{a,1}, Bin Lin^{b,1}, Ye-Qin Du^a, Chuan Li^c, Xiao-Qi Yu^a, Xiao-Bian Xue^a, Qing-Bo Liu^a, Shao-Jiang Song^a, Xiao-Xiao Huang^{a*}

^a Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China

^b School of Pharmaceutical Engineering, Shenyang Pharmaceutical University. Shenyang 110016, People's Republic of China

^c General Hospital of Northern Theater Command, Shenyang 110016, People's republic of China

*Corresponding author.

E-mail addresses: xiaoxiao270@163.com (X.-X. Huang)

¹ These authors contributed equally to this work.

List of supplementary content

Figure S1.1 UV spectrum of compound 1

Figure S1.2 HRESIMS spectrum of compound 1

- Figure S1.3 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 1
- Figure S1.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 1
- Figure S1.5 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 1a
- Figure S1.6¹³C NMR spectrum (150 MHz, CDCl₃) of compound 1a
- Figure S1.7 HSQC spectrum (600 MHz, CDCl₃) of compound 1a
- Figure S1.8 HMBC spectrum (600 MHz, CDCl₃) of compound 1a
- Figure S1.9 NOESY spectrum of compound 1a
- Figure S1.10 ¹H NMR spectrum (600 MHz, CDCl₃) of (S)-MTPA ester derivative of 1
- Figure S1.11 ¹H NMR spectrum (600 MHz, CDCl₃) of (R)-MTPA ester derivative of

1

- Figure S2.1 UV spectrum of compound 2
- Figure S2.2 HRESIMS spectrum of compound 2
- Figure S2.3 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 2
- Figure S2.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 2
- Figure S2.5 HSQC spectrum (600 MHz, CDCl₃) of compound 2
- Figure S2.6 HMBC spectrum (600 MHz, CDCl₃) of compound 2
- Figure S2.7 ¹H-¹H COSY spectrum of compound 2
- Figure S2.8 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 2a
- Figure S2.9 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 2a
- Figure S2.10 HSQC spectrum (600 MHz, CDCl₃) of compound 2a
- Figure S2.11 HMBC spectrum (600 MHz, CDCl₃) of compound 2a
- Figure S2.12 NOESY spectrum of compound 2a
- Figure S3.1 UV spectrum of compound 3
- Figure S3.2 HRESIMS spectrum of compound 3
- Figure S3.3 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 3
- Figure S3.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3

- Figure S3.5 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 3
- Figure S3.6 ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 3
- Figure S3.7 HSQC spectrum (600 MHz, DMSO-*d*₆) of compound 3
- Figure S3.8 HMBC spectrum (600 MHz, DMSO- d_6) of compound 3
- Figure S3.9 ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound 3
- Figure S3.10 Results of DP4+ analysis of compound 3
- Figure S3.11 The low-energy conformers of the 3a
- Figure S3.12 The low-energy conformers of the 3b
- Figure S4.1 UV spectrum of compound 4
- Figure S4.2 HRESIMS spectrum of compound 4
- Figure S4.3 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 4
- Figure S4.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 4
- Figure S4.5 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 4
- Figure S4.6 ¹³C NMR spectrum (150 MHz, DMSO-d₆) of compound 4
- Figure S4.7 HSQC spectrum (600 MHz, DMSO-d₆) of compound 4
- Figure S4.8 HMBC spectrum (600 MHz, DMSO- d_6) of compound 4
- Figure S4.9 ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound 4
- Figure S4.10 Results of DP4+ analysis of compound 4
- Figure S4.11 The low-energy conformers of the 4a
- Figure S4.12 The low-energy conformers of the 4b
- Figure S5.1 UV spectrum of compound 5
- Figure S5.2 HRESIMS spectrum of compound 5
- Figure S5.3 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 5
- Figure S5.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 5
- Figure S5.5 HSQC spectrum (600 MHz, CDCl₃) of compound 5
- Figure S5.6 HMBC spectrum (600 MHz, CDCl₃) of compound 5
- Figure S5.7 ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound 5
- Figure S5.8 ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 5
- Figure S5.9 HSQC spectrum (600 MHz, DMSO-d₆) of compound 5
- Figure S5.10 HMBC spectrum (600 MHz, DMSO-*d*₆) of compound 5

Figure S5.11 ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound 5

Figure S5.12 1D NOESY spectrum (600 MHz, DMSO- d_6) of compound 5: selective

- excitation at $\delta_{\rm H}$ 5.12 (5'-OH), full spectrum
- Figure S5.13 Results of DP4+ analysis of compound 5
- Figure S5.14 The low-energy conformers of the 5a
- Figure S5.15 The low-energy conformers of the 5b
- Figure S6.1 UV spectrum of compound 6
- Figure S6.2 HRESIMS spectrum of compound 6
- Figure S6.3 ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound 6
- Figure S6.4 ¹³C NMR spectrum (125 MHz, DMSO- d_6) of compound 6
- Figure S6.5 HSQC spectrum (600 MHz, DMSO-d₆) of compound 6
- Figure S6.6 HMBC spectrum (600 MHz, DMSO- d_6) of compound 6
- Figure S6.7 ¹H-¹H COSY spectrum of compound 6
- Figure S6.8 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 6a
- Figure S6.9 ¹³C NMR spectrum (150 MHz, DMSO-d₆) of compound 6a
- Figure S6.10 HSQC spectrum (600 MHz, DMSO-d₆) of compound 6a
- Figure S6.11 HMBC spectrum (600 MHz, DMSO-d₆) of compound 6a
- Figure S6.12 NOESY spectrum of compound 6a
- Table S1 ¹H NMR spectroscopic data for compounds 1, 5, 7, 8
- Table S2 ¹³C NMR spectroscopic data for compounds 1, 5, 7, 8
- **Table S3** ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectroscopic data for compounds **1a**, **2a** (in CDCl₃)
- **Table S4** ¹H NMR (600MHz) and ¹³C NMR (150MHz) spectroscopic data for compound **6a** (in DMSO- d_6).
- Table S5 Cytotoxicity of compounds 1-8 against two human cancer cell lines.
- **Table S6** DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **3a**
- **Table S7** DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **3b**
- Table S8 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most

relevant conformers of 4a

Table S9 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **4b**

Table S10 DFT B3LYP/6-311+G(d, p) relative free energies and population for themost relevant conformers of 5a

Table S11 DFT B3LYP/6-311+G(d, p) relative free energies and population for themost relevant conformers of 5b

Table S12 Calculated ¹³C chemical shift values (cal.) of structure 3a-5a, 3b-5b

Data Set: 没有

Figure S1.1 UV spectrum of compound 1

Elemental Composition Report

0 -

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 21-21 H: 0-50 O: 0-8 S: 0-1 DZK-23 & (0.481) 1: TOF MS ES+ 1.90e+005 392.2532 392.3393 393.1903 393.2940 393.7513 393.8502 394.1048 100 393.1215 392.6976 ____ m/z 394.50 392.00 392.25 392.50 392.75 393.00 393.25 393.50 393.75 394.00 394.25 $\begin{array}{ccc} -1.5 \\ 20.0 & 10.0 & 50.0 \end{array}$ Minimum: Maximum: Mass Calc, Mass mDa PPM DBE i-FIT Norm Conf(%) Pormula 393. 1903 393. 1913 -1. 0 -2. 5 7. 5 345. 6 n/a n/a C21 H29 07 1: TOF MS ES+ 1.90e5 DZK-23 84 (0.481) 393.1903 100 % 393.2940 1 1 393.3618^{393.4155} 393.5671 ^{393.7513} 393.8502 394.1048 394 393.0773 393.1215 392.3393 392.5431 392.6976 392.8214

Figure S1.2 HRESIMS spectrum of compound 1

393

Page 1

Figure S1.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 1

Figure S1.6 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 1a

Figure S1.7 HSQC spectrum (600 MHz, CDCl₃) of compound 1a

Figure S1.8 HMBC spectrum (600 MHz, CDCl₃) of compound 1a

Figure S1.10 ¹H NMR spectrum (600 MHz, CDCl₃) of (S)-MTPA ester derivative of 1

Figure S1.11 ¹H NMR spectrum (600 MHz, CDCl₃) of (*R*)-MTPA ester derivative of **1**

Data Set: 没有

FIELD TEXT

Figure S2.1 UV spectrum of compound 2

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name D:\Data\20191218-CEYANG\DZK-25_1-A,8_01_14757.d 20191205yezhi.m DZK-25

12/18/2019 12:34:06 PM Acquisition Date

125

Bruker Customer Operator Instrument / Ser# micrOTOF-Q

Method Sample Name Comment

1/1/2020 10:37:37 AM Bruker Compass DataAnalysis 4.0 printed: Page 1 of 1

Figure S2.2 HRESIMS spectrum of compound 2

Figure S2.4¹³C NMR spectrum (125 MHz, CDCl₃) of compound 2

Figure S2.5 HSQC spectrum (600 MHz, CDCl₃) of compound 2

Figure S2.6 HMBC spectrum (600 MHz, $CDCl_3$) of compound 2

Figure S2.8 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 2a

Figure S2.10 HSQC spectrum (600 MHz, CDCl₃) of compound 2a

Figure S2.11 HMBC spectrum (600 MHz, CDCl₃) of compound 2a

Figure S2.12 NOESY spectrum of compound 2a

Data Set: 没有

Fig. S3.1 UV spectrum of compound 3

Elemental Composition Report

0

351.100

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 32 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 18-21 H: 0-50 O: 0-8 S: 0-1 DZK-27 68 (0.398) Cm (68) 1: TOF MS ES+ 1.88e+004 351.1043 351.1815 1083 351.500 m/z 1 350.800 351.200 350.900 351.000 351.100 351.300 351.400 Minimum: Maximum: $\begin{array}{rrrr} -1.5 \\ 20.0 & 10.0 & 50.0 \end{array}$ Mass - Calc, Mass mDa - PPM -DBE i-FIT Norm Conf(%) Formula 351, 1438 351, 1444 -0.6 -1.7 7.5 C18 H23 07 47.7 n/a n/a DZK-27 68 (0.398) Cm (68) 100 351.1043 1: TOF MS ES+ 1.88e4 100 351.1815 % 351.1438

351.110 351.120 351.130 351.140 351.150 351.160 351.170

Page 1

, m/z

351.180

351.190

Figure S3.4 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3

Fig. S3.5 ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound 3

Figure S3.6 ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of compound 3

Figure S3.7 HSQC spectrum (150 MHz, DMSO-*d*₆) of compound 3

Figure S3.8 HMBC spectrum (150 MHz, DMSO- d_6) of compound 3

Figure S3.9 ¹H-¹H COSY spectrum (150 MHz, DMSO-*d*₆) of compound 3

Functional B3LYP		Solvent? PCM		Basis Set 6-311+6 (d. p)		Type of Data Unscaled Shifts		
		DP4+	f 0, 00%	100,00%	-	-	-	
Nuclei	sp2?	speriments	Isomer 1	Isomer 2	Isomer 3	Isomer	4 Isom	er 5
С	x	159.8	174.9	175.0				
C	x	149.7	166, 9339	166, 8152				
С	x	144.8	165.0869	165, 538				
C	x	144.4	161.9222	162.3606				
C	x	142.2	160, 6986	160, 8472		H ₂ CO	~ ~	
С	x	140.3	157, 1928	157,062	-0.	-		1
С	x	114.5	129, 9657	130, 2141		~~		6
С	x	114.2	128.0281	127, 9499	\sim	0	Y O	-0
С	x	105	117.0567	117.2583	Ċ	ĎΗ	ÓCH₃	
С		83.4	99.09457	99.06178				
С		75.8	94.1119	93, 78059		3A (Iso	mer 1)	
C		74.6	90, 2547	90, 61629		1		
C		67.2	82, 1649	82, 16784				
С		61.5	71. 7203	71.58025				
С		56.2	65.71487	65.73771	0	H3CO		5
С		34.8	50.07366	45.83079	F L.M			
С		25.5	39.66333	40. 18812	LA.	~0	0	0
C		21.4	31.46886	36. 3597		u	OCH.	
н	x	7.6	7.71836	7.73361		л	OCH3	
н	x	6.67	6. 69335	6.65221		3R (Iso	mar 2)	
н	x	6.33	6.104	6. 14962		3D (130)	iner 2)	
н		4.5	4.91778	4. 91059				
H		4.03	4. 47103	4.40674				
н		4.03	4. 26026	4. 18832				
н		4.03	4.07224	4.06286				
н		3.91	4.06789	3.97103				
н		3.88	3.85228	3.92898				
н		3.88	3.7734	3.89182				
н		3.88	3.7704	3.81882				
н		3.84	3.7623	3. 76351				
Н		3.8	3. 73329	3. 66965				
Н		3.8	3. 63924	3. 63044				
Н		2.1	3. 41419	3. 41201				
н		1.91	2.08571	2. 11019				
Н		1.63	1.78198	1.72141				
Н		1.16	1.77546	1.71433				
Н		1.16	1. 57957	1.41128				
Н		1.16	1.25057	1.35528				
Н		1.05	0.77683	1.06572				
Н		1.05	0.75846	1.05783				

Figure S3.10 Results of DP4+ analysis of compound 3

Figure S3.11 The low-energy conformers of the 3a

Figure S3.12 The low-energy conformers of the 3b

FIELD FIELD TEXT

Data Set: 没有

Fig. S4.1 UV spectrum of compound 4

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 9 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 19-19 H: 0-50 O: 0-8 DZK-36 75 (0.434) 1: TOF MS ES+ 8.74e+005 100 374.3622 375.1404 376.2579 378.1447 381.1170 384.2052 385.1854 386.1881 388.2465 391.1322 393.2939 394.2943 372.0 374.0 376.0 378.0 380.0 382.0 384.0 386.0 388.0 390.0 392.0 394.0 396.0 398.2096 m/z 398.0 Minimum: Maximum: $\begin{array}{rrr} -1.5\\20.0&10.0&50.0\end{array}$ Mass Calc, Mass mDa PPM DBE i-FIT Norm Conf(%) Pormula 385, 1854 385, 1862 -0, 8 -2, 1 5, 5 890, 9 n/a n/a C19 H29 08 1: TOF MS ES+ 8.74e5 DZK-36 75 (0.434) 385.1854 100 % 375.1404 386,1881 391.1322 393.2939 1:392.1386 394.2943 397 1953 398.2096 m/z 393.2939 374.3622 376.2579 387,1892 388,2465 373.1262 384.2052 377.3220 378.1447 381.1170 0 -373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

Page 1

Figure S4.4 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 4

Figure S4.6 ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of compound 4

Figure S4.7 HSQC spectrum (600 MHz, DMSO-*d*₆) of compound 4

Figure S4.8 HMBC spectrum (600 MHz, DMSO-d₆) of compound 4

Figure S4.9 ¹H-¹H COSY spectrum (600 MHz, DMSO-*d*₆) of compound 4

Functional		Solvent?		Basis Set		Type of Data	
B3L	YP	P		6-311+	G (d, p)	Unscale	d Shifts
		DP4+	1 0.00%	100.00%	-	-	-
Nuclei	sp2?	perimente	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
С	x	174.11	192.8	192.8			
С	x	146.03	170.3584	170. 327		12	
с	x	141.51	169.7085	169.955			
с	x	140.77	154.619	154. 6937			
с	x	139.87	153.0821	152.4927			
С	x	121.86	117.4827	118.114			
с	x	108.74	117.4639	117.2879			
С		83.35	98.76766	96.6766			
с		76	92.9867	89.6866			
с		75.18	90. 19046	90.36065			
С		68.22	82.02282	81.98159			
С		61.45	65. 53452	65. 4296			0 0
С		56.67	65. 37688	65. 2725	H ₃	0.	
С		51.84	63.01482	62.95871	F°.	T T	~ OCH3
с		34.78	50. 67735	50. 53293	LX		н
С		34.26	50. 28783	46. 36262	~	OCT.	
с		26.13	44. 61705	44. 52254	UN	UCH3	
С		25.78	39.707	40.63714		11 ann 1	
С		22.07	31. 35834	36. 37506		4A (Isomer 1	,
н	x	6.46	6, 49893	6. 54602			
н		4.39	4.8662	4.88804			0
н		3.94	4, 41917	4. 37661	TT .		Ŭ
н		3,94	4.05364	4.04149	-0,	WY Y	OCH;
H		3.94	3.9679	3, 93475	1 Xin		
н		3, 85	3, 8398	3, 84429	VY	o y c	DH
H		3.8	3, 74739	3, 73117	ŌН	OCH3	
н		3.8	3, 71874	3, 70427			
н		3.8	3, 71593	3, 67153		4B (Isomer 2))
н		3.8	3, 67508	3,64635			
н		3.78	3, 61909	3, 63119			
н		3, 68	3, 61204	3,61104		1	
н		3, 68	3,6088	3,60252			
H		3, 68	3, 59345	3, 5944			
н		2.9	3, 45283	3, 44383			
H		2.9	2,95583	3. 03333			
н		2,64	2,65457	2,68096		1	
н		2.64	2, 61478	2, 5945			
н		2, 11	2, 45723	2,46365			
H		1, 93	2, 44626	2,43119			
H		1, 93	2,02228	2.03543			
н		1,64	1.78861	1.75635			
н		1, 16	1.77864	1.64419			
н		1, 16	1,61697	1.48514			
н		1, 16	1.31765	1,35825			

Figure S4.10 Results of DP4+ analysis of compound 4

Figure S4.11 The low-energy conformers of the 4a

Figure S4.12 The low-energy conformers of the 4b

FIELD FIELD TEXT

Data Set: 没有

Figure S5.1 UV spectrum of compound 5

Figure S5.3 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 5

Mass Spectrum Molecular Formula Report

Figure S5.5 HSQC spectrum (600 MHz, $CDCl_3$) of compound 5

Figure S5.7 ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound 5

Figure S5.9 HSQC spectrum (600 MHz, DMSO-*d*₆) of compound 5

Figure S5.10 HMBC spectrum (600 MHz, DMSO-*d*₆) of compound 5

Figure S5.11 ¹H-¹H COSY spectrum (600 MHz, DMSO-*d*₆) of compound 5

Figure S5.12 1D NOESY spectrum (600 MHz, DMSO- d_6) of compound **5**: selective excitation at $\delta_{\rm H}$ 5.12 (5'-OH), full spectrum

Funct	Functional		Solvent?		Basis Set		Type of Data	
B3L	YP	P	CM	6-311+	6 (d, p)	Unscale	d Shifts	
		DP4+	1 0.00%	100.00%	-	-	-	
Nuclei	sp2?	sperimenta	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	
C	x	160. 52	168.2	168.3				
С	x	149.95	158.0048	158.0329				
С	x	144.97	156. 6379	156. 1129				
C	x	143. 54	154.8346	153.9685				
C	x	143.26	153. 4626	153. 3754				
С	x	141.07	150. 228	150.2183				
С	x	115.47	150, 0541	122.9936				
С	x	114.61	119.8703	120. 3344				
С	x	103.99	111. 1762	109, 1907				
C		85.29	94.40885309	94.40885309				
C		79,06	90, 85250608	90.85250608				
C		78, 73	84, 63819817	84. 63819817				
c		78, 62	81,95009739	81,95009739				
C		73, 73	80.06880265	80.06880265	uo I	H ₃ CO.	~ ~	
C		71.95	78,83146441	78.83146441	N. 0.	N I	YY	
C		62.08	63, 45079407	63, 45079407	HI	K ~~~	1 Anda	
C		56.4	58 10961073	58 10061073			T0	
C		41 11	47 36325494	47 36325484	HO.	OH	OCH3	
C		27 42	27 2402006	27. 2402006				
0		25.12	26 42771076	26 42771076		5A (Isomer 1)	-	
0	-	20.13	20. 43111010	20. 43111010				
U U	-	7.07	20.00040431	20.00040431		11.00		
п	X	7.10	7 0166	0. 1035	HO	H3CO	NO.	
. п	X	1.12	7.9100	7 1050				
п	x	0.4	7. 300	7. 1930	H	70	000	
H H		4.23	7. 02072223	0. 09003203	HO	ÓН	OCH3	
H		4.09	0. 00090049	0. 83080538				
н		3. 99	0.315/4/5/	0. 30800312		5B (Isomer 2)		
н		3. 94	5. 62334185	6. 28820193				
н		3.9	5. 52972158	6. 22670327				
Н		3.9	5. 49796781	6. 1365072				
Н		3.9	5. 43914671	6.08912693				
H		3. 84	5. 32355889	5.88091041				
H		3.84	5. 22840201	5.83347355				
H		3.84	5.07513711	5. 73683761				
H		3.35	4.97952293	5. 72433249				
H		2.09	4.93334971	5.71066903				
H		1.95	4. 92939646	5. 37067494				
H		1.18	4. 73180577	4. 51012289				
H		1.18	3. 71106121	4. 28657508				
H		1.18	3. 24037063	3.99850835				
Н		1.05	2.66553159	3.93028256				
Н		1.05	2. 62056587	3.91434128				
н		1.05	2. 55237927	3. 49100913				
Н		1.01	2. 44925192	3. 490956				
Н		1.01	2. 44545436	3. 44238113				
Н		1.01	2. 39277685	3. 43790513				

Figure S5.13 Results of DP4+ analysis of compound 5

Figure S5.14 The low-energy conformers of the 5a

1.47%

Figure S5.15 The low-energy conformers of the 5b

FIELD FIELD TEXT

Data Set: 没有

Figure S6.1 UV spectrum of compound 6

Mass Spectrum Molecular Formula Report

Figure S6.3 ¹H NMR spectrum (600 MHz, DMSO- d_6) of compound 6

Figure S6.5 HSQC spectrum (600 MHz, DMSO-d₆) of compound 6

Figure S6.6HMBC spectrum (600 MHz, DMSO-*d*₆) of compound 6

Figure S6.7 ¹H-¹H COSY spectrum of compound 6

Figure S6.8 ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound 6a

Figure S6.9 ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of compound 6a

Figure S6.10 HSQC spectrum (600 MHz, DMSO-d₆) of compound 6a

Figure S6.11 HMBC spectrum (600 MHz, DMSO-d₆) of compound 6a

Figure S6.12 NOESY spectrum of compound 6a

NO.	1 ^a	5 ^b	7 ª	8 ^a	
3	6.36 (d, 9.5)	6.40 (d, 9.5)	6.33 (d, 9.5)	6.34 (d, 9.5)	
4	7.63 (d, 9.5)	7.97 (d, 9.5)	7.60 (d, 9.5)	7.61 (d, 9.5)	
5	6.70 (s)	7.12 (s)	6.55 (s)	6.65 (s)	
11	4.56 (dd, 10.6, 2.5)	4.09 (dd, 10.6, 2.7)	467(460)	467(460)	
1	4.06 (dd, 10.6, 7.9)	3.99 (dd, 10.6, 7.0)	4.07 (d, 0.9)	4.07 (d, 0.9)	
2'	3.71 (dd, 7.9, 2.5)	3.94 (dd, 7.0, 2.7)	5.55 (dq, 6.9, 1.5)	5.55 (1H, m)	
41	1.61(m) $1.41(m)$	2.09 (dd, 12.5, 6.7)	2.02 (m)	1.77(4.1.5)	
4	1.01 (III), 1.41 (III)	1.95 (dd, 12.5, 8.0)	2.05 (111)	1.// (u, 1.3)	
5'	2.15 (m), 2.06 (m)	4.23 (m)	2.05 (m)	1.71 (d, 1.5)	
6'	5.11 (t, 7.0)	3.35 (m)	5.06 (m)	-	
7'	-	-	-	-	
8'	1.67 (s)	1.05 (s)	1.66 (d, 1.5)	-	
9'	1.25 (s)	1.18 (s)	1.69 (d, 1.5)	-	
10'	1.61 (s)	1.01 (s)	1.58 (d, 1.5)	-	
6-OCH ₃	3.87 (s)	3.84 (s)	3.88 (s)	3.89 (s)	
8-OCH ₃	4.01 (s)	3.90 (s)	4.03 (s)	4.03 (s)	
2'-OH	-	5.15 (s)	-	-	
6'-OH	-	5.04 (d, 5.2)	-	-	
7'-OH	-	4.19 (s)	-	-	

 Table S1 ¹H NMR spectroscopic data for compounds 1, 5, 7, 8.

 $^{\rm a}$ Recorded in CDCl_3 and 600 MHz. o: The abbreviation for overlapped. ^b Recorded in DMSO-*d*₆ and 600 MHz.

NO.	1 ^a	5 ^b	7 ^a	8 ^a
2	160.2	159.8	160.7	160.7
3	115.4	114.6	115.3	115.2
4	143.5	144.4	143.6	143.6
5	103.9	105.0	103.6	103.7
6	149.7	149.7	150.8	150.8
7	144.7	144.4	145.0	145.0
8	141.0	140.3	141.9	141.1
9	142.9	142.2	142.7	143.1
10	114.8	114.4	114.6	114.3
1'	76.1	73.6	70.4	70.4
2'	75.1	84.4	119.7	120.1
3'	73.4	78.6	143.1	139.4
4'	38.0	42.1	39.7	26.0
5'	22.1	77.6	26.5	18.1
6'	124.3	76.9	23.9	
7'	131.8	71.1	131.9	
8'	25.7	25.3	25.8	
9'	23.3	21.7	16.4	
10'	17.7	27.2	17.6	
6-OCH ₃	56.4	56.2	56.4	56.4
8-OCH ₃	62.0	61.4	61.8	61.8

 Table S2 ¹³C NMR spectroscopic data for compounds 1, 5, 7, 8.

^a Recorded in CDCl₃ and 150 MHz.

^b Recorded in DMSO-*d*₆ and 150 MHz.

Table S3 ¹H NMR (600MHz) and ¹³C NMR (150MHz) spectroscopic data for compounds **1a**, **2a** (in CDCl₃).

NO.	2a		1a	
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
2	-	174.1	-	160.6
3	2.64 (t, 7.6)	34.3	6.35 (d, 9.5)	115.6
4	2.90 (t, 7.6)	25.8	7.60 (d, 9.5)	143.5
5	6.44 (s)	108.8	6.60 (s)	103.8
6	-	146.4	-	150.3
7	-	139.6	-	145.0
8	-	140.5	-	141.5
9	-	141.3	-	143.1
10	-	121.0	-	114.8

4.16 (m)	71.7	4.33 (dd, 10.1, 7.0)	77.7
4.03 (dd, 9.2, 36)	/1./	4.11 (dd, 10.1, 4.9)	12.2
4.19 (m)	83.0	4.21 (dd, 7.0, 4.9)	82.7
-	81.6	-	81.7
1.59 (dd, 12.7, 7.5)	25.1	$1.58 (m) \cdot 1.21 (m)$	25.1
1.29 (dd, 12.7, 6.0)	55.1	1.38 (11), 1.31 (11)	55.1
2.17 (m), 2.03 (m)	22.0	2.20 (m), 2.03 (m)	22.0
5.10 (t, 7.4)	125.6	5.11 (t, 7.2)	124.5
-	131.7	-	131.8
1.67 (s)	25.8	1.67 (s)	25.8
1.34 (s)	23.4	1.34 (s)	23.5
1.60 (s)	17.7	1.61 (s)	17.7
-	107.9	-	108.1
1.41 (s)	27.2	1.42 (s)	27.2
1.45 (s)	28.5	1.45 (s)	28.5
3.68 (s)	51.8	-	-
3.77 (s)	56.6	3.87 (s)	56.4
3.95 (s)	61.8	4.03 (s)	62.1
	4.16 (m) 4.03 (dd, 9.2, 36) 4.19 (m) - 1.59 (dd, 12.7, 7.5) 1.29 (dd, 12.7, 6.0) 2.17 (m), 2.03 (m) 5.10 (t, 7.4) - 1.67 (s) 1.34 (s) 1.60 (s) - 1.41 (s) 1.45 (s) 3.68 (s) 3.77 (s) 3.95 (s)	$\begin{array}{cccc} 4.16 \ (m) & 71.7 \\ 4.03 \ (dd, 9.2, 36) & 71.7 \\ 4.03 \ (dd, 9.2, 36) & 83.0 \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S4 ¹H NMR (600MHz) and ¹³C NMR (150MHz) spectroscopic data for compounds **6a** (in DMSO- d_6).

NO.	6a	
	$\delta_{ m H}$	$\delta_{ m C}$
2	-	159.7
3	6.42 (d, 9.5)	114.6
4	7.98 (d, 9.5)	144.0
5	7.16 (s)	105.0
6	-	149.7
7	-	144.4
8	-	140.3
9	-	142.1
10	-	114.9
1'	4.21 (dd, 10.5, 8.2) 4.15 (o)	71.3
2'	3.60 (8.2, 3.8)	82.9
3'	-	79.7
4'	1.70 (dt, 12.9, 3.8) 1.31 (o)	31.1
5'	1.58 (m), 1.45 (m)	22.8
6'	4.15 (o)	82.1
7'	-	80.9
8'	1.01 (s)	22.9
9'	1.16 (s)	26.0

10'	1.29 (s)	23.0
1"	-	105.8
2"	1.23 (s)	26.9
3"	1.27 (s)	27.9
1"	-	107.2
2"	1.32 (s)	26.9
3"	1.35 (s)	28.6
6-OCH ₃	3.92 (s)	61.5
8-OCH ₃	3.84 (s)	56.2

Table S5 Cytotoxicity of compounds 1-8 against two human cancer cell lines.

_	$IC_{50} (\mu M) \pm SD^a$			
Compounds	hep 3B	hepG2		
1	27.86 ± 1.11	38.55 ± 1.37		
2	>50	>50		
3	>50	>50		
4	>50	>50		
5	>50	>50		
6	>50	>50		
7	>50	>50		
8	>50	>50		
sorafenib ^b	6.436 ± 0.70	9.014 ± 0.62		

a Cytotoxicity was expressed as the mean value of three experiments ± SD b Sorafenib was used as positive control

Table S6 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **3a**

Conformer	ΔG^a	Population ^b
3a-1	0.0000	0.1545
3a-2	0.0001	0.1545
3a-3	0.0001	0.1320
3a-4	0.0002	0.1320
3a-5	0.0007	0.0747

3a-6	0.0008	0.0630
3a-7	0.0009	0.0320
3a-8	0.0012	0.0281
3a-9	0.0015	0.0247
3a-10	0.0018	0.0219

Table S7 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **3b**

Conformer	ΔG^a	Population ^b
3b-1	0.0000	0.1241
3b-2	0.0001	0.1134
3b-3	0.0002	0.1037
3b-4	0.0003	0.0909
3b-5	0.0003	0.0909
3b-6	0.0005	0.0759
3b-7	0.0006	0.0650
3b-8	0.0008	0.0547
3b-9	0.0008	0.0509
3b-10	0.0013	0.0288

Table S8 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most

Conformer	ΔG^{a}	Population ^b
4a-1	0.0000	0.1147
4a-2	0.0000	0.1103
4a-3	0.0000	0.1102
4a-4	0.0000	0.1102
4a-5	0.0002	0.0910
4a-6	0.0003	0.0853
4a-7	0.0009	0.0451

relevant conformers of 4a

4a-8	0.0009	0.0445
4a-9	0.0009	0.0431
4a-10	0.0010	0.0414

Table S9 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most

Conformer	ΔG^a	Population ^b
4b-1	0.0000	0.0885
4b-2	0.0001	0.0829
4b-3	0.0002	0.0729
4b-4	0.0002	0.0689
4b-5	0.0002	0.0688
4b-6	0.0002	0.0688
4 b -7	0.0003	0.0648
4b-8	0.0003	0.0639
4b-9	0.0008	0.0371
4b-10	0.0009	0.0338

relevant conformers of **4b**

Table S10 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **5a**

Conformer	ΔG^{a}	Population ^b
5a-1	0.0000	0.4053
5a-2	0.0000	0.4053
5a-3	0.0020	0.0452
5a-4	0.0026	0.0261
5a-5	0.0032	0.0137

Table S11 DFT B3LYP/6-311+G(d, p) relative free energies and population for the most relevant conformers of **5b**

Conformer ΔG^{a} Population ⁶	Conformer	$\varDelta G^{a}$	Population ^b
--	-----------	-------------------	-------------------------

5b-1	0.0000	0.4138
5b-2	0.0006	0.2161
5b-3	0.0006	0.2161
5b-4	0.0020	0.0498
5b-5	0.0020	0.0498
5b-6	0.0032	0.0147

Table S12 Calculated ¹³C chemical shift values (cal.) of structure 3a-5a, 3b-5b

NO.	3 a	3 b	4 a	4b	5a	5b
1	-	-	117.5	117.3	-	-
2	147.9	175.0	117.5	118.1	168.2	168.3
3	128.0	127.9	169.7	169.9	120.5	123.0
4	161.9	162.4	154.6	154.7	154.8	154.0
5	117.1	117.3	153.1	152.5	111.2	109.2
6	166.9	166.8	170.4	170.3	158.0	158.0
7	165.1	166.5	-	-	156.6	156.1
8	157.2	157.1	-	-	150.2	150.2
9	160.7	160.8	-	-	153.5	153.4
10	130.0	130.2	-	-	119.9	120.3
1'	94.1	93.8	93.0	89.7	80.1	81.8
2'	90.3	90.6	90.2	90.3	94.4	91.4
3'	99.1	99.0	98.7	96.7	84.6	83.8
4'	50.1	45.8	50.7	50.5	47.4	48.7
5'	39.6	40.0	39.7	40.6	81.9	82.7
6'	82.2	82.2	82.0	82.0	90.8	90.9
7'	31.5	36.4	31.4	36.4	78.8	78.8
8'	-	-	-	-	27.3	30.3
9'	-	-	-	-	26.1	26.9
10'	-	-	-	-	26.4	28.3
1"	-	-	44.6	44.5	-	-
2"	-	-	50.3	46.3	-	-
3"	-	-	192.8	192.8	-	-
6-OCH ₃	65.7	65.7	65.4	65.3	58.1	58.1
8-OCH ₃	71.7	71.6	65.5	65.4	63.5	63.8
3"-OCH ₃	-	-	63.0	63.0	-	-