Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Synergistic Effect between La-Ni Bimetallic Oxides for the Efficient

Decomposition of Hydrogen Peroxide

Kui Liu, Yafei Cheng, Ying Shi, Wei Zhang, Yu Wang, Fan Tang and Xijie Lin*

School of Chemical and Pharmaceutical Science, Guangxi Normal University,

Guilin, 541004, China.

E-mail: linxijie@mailbox.gxnu.edu.cn

Fig. S1 HR-TEM images of as-prepared LaNiO₃ (a) and La₂NiO₄ (b).

Fig. S2 N₂ sorption isotherms of as-prepared LaNiO₃ (a) and La₂NiO₄ (b), respectively. Inset was the corresponding pore-size distribution plot.

Fig. S3 XPS survey spectrum of as-prepared $LaNiO_3$ (a) and La_2NiO_4 (b).

Fig. S4 N_2 sorption isotherms of La_2O_3 (a), Ni_2O_3 (b), and NiO (c), respectively.

Inset was the corresponding pore-size distribution plot.

Kinetics study of H₂O₂ decomposition

For the H_2O_2 decomposition, the kinetic equation can be described as Eq. (1).

(2)

$$r = -\frac{dc_{H_2O_2}}{dt} = kc_{H_2O_2}^n \tag{1}$$

After logarithm, Eq. (2) can be obtained:

$$\ln r = \ln k + n \ln c_{H_2 O_2}$$

Here, r: rate of
$$H_2O_2$$
 decomposition, mol/(L·min)

t: time, min

 $c_{H_2O_2}$: concentration of H₂O₂, mol/L

k: rate constant

n: reaction order

If the reaction follows first order kinetics (n=1), Eq. (3) can be obtained through integration of Eq.(1). The concentration of H₂O₂ on a log scale is plotted as a function of the reaction time.

$$\ln[c_{H_2O_2}]_t = -kt + \ln[c_{H_2O_2}]_0$$
(3)

Here, $[c_{H_2O_2}]_t$: concentration of H₂O₂ at time t, mol/L

 $[c_{H_2O_2}]_0$: initial concentration of H_2O_2 ,mol/L

From the fitting data of Eq.(3), rate constant k can be obtained.

If rate constant k conforms to Arrhenius equation(Eq.(4)),

$$k = Ae^{-\frac{E_a}{RT}} \tag{4}$$

After logarithm we obtain Eq. (5):

$$\ln k = \ln A - \frac{E_a}{BT} \tag{5}$$

The activation energy can be calculated by Arrhenius equation by fitting data at different temperature(T).

Here,

k: rate constant

A: pre-exponential constant, mol/(m²·s)

Ea: activation energy, kJ/mol

T: temperature, K

Assuming the reaction order *n* of H₂O₂ decomposition catalyzed by LaNiO₃ and La₂NiO₄ is 1, the experimental data of concentration of H₂O₂ at different time *t* (Table S1 and Table S2) are fitted according to Eq.(3). As shown in Fig.S5a and Fig.S6a, the straight lines $(\ln c_{H_2O_2} \text{ versus } t)$ with higher correlation coefficient (R²>0.96) indicate that the assumption is correct. The rate constant *k* is obtained from the slope of the fitted straight lines. Then, the data of *k* at different temperatures *T* are fitted according to Eq.(5). Again, the straight lines with higher correlation coefficient (R²>0.98) are obtained, as shown in Fig.S5b and Fig.S6b. The activation energy is calculated from the slope of the fitted line, which is 52.84 kJ/mol and 61.43 kJ/mol for LaNiO₃ and La₂NiO₄, respectively.

Table S1 The concentration of H_2O_2 collected from different reactionconditions (used prepared LaNiO3 as the catalyst).

Temperaure	Reaction Time	H ₂ O ₂ Concentration	Temperaure	Reaction Time	H ₂ O ₂ Concentration
(°C)	(min)	(mol/L)	(°C)	(min)	(mol/L)
20	0	1.2000	30	0	1.2000
	5	0.9800		5	0.9463
	10	0.8852		10	0.7631
	15	0.7631		15	0.5800
	20	0.6410		20	0.3968
	25	0.5495		25	0.2564
	30	0.4526		30	0.1774
25	0	1.2000	35	0	1.2000
	5	0.9768		5	0.9158
	10	0.8425		10	0.6716
	15	0.6593		15	0.4579
	20	0.4884		20	0.3175
	25	0.3785		25	0.1709
	30	0.2930		30	0.0916

Fig. S5 (a) Kinetics of H_2O_2 decomposition (1.2 mol/L) catalyzed by LaNiO₃ (0.1 g) at different reaction temperatures; (b) Arrhenius plots of ln*k* as a function of inverse temperature (1/*T*) for LaNiO₃.

Table S2 The concentration of H_2O_2 collected from different reactionconditions (used prepared La2NiO4 as the catalyst).

Temperaure	Reaction Time	H ₂ O ₂ Concentration	Temperaure	Reaction Time	H ₂ O ₂ Concentration
(°C)	(min)	(mol/L)	(°C)	(min)	(mol/L)
25	0	1.2000	35	0	1.2000
	5	1.1416		5	1.0989
	10	1.0989		10	1.0256
	15	1.0379		15	0.9158
	20	0.9768		20	0.7937
	25	0.9280		25	0.7021
	30	0.8919		30	0.6460
30	0	1.2000	40	0	1.2000
	5	1.1294		5	1.0684
	10	1.0684		10	0.9768
	15	0.9890		15	0.8425
	20	0.9035		20	0.6716
	25	0.8242		25	0.5189
	30	0.7362		30	0.4669

Fig. S6 (a) Kinetics of H₂O₂ decomposition (1.2 mol/L) catalyzed by La₂NiO₄ (0.1 g) at different reaction temperatures. (b) Arrhenius plots of ln*k* as a function of inverse temperature (1/T) for La₂NiO₄.