Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Figure S1: TGA of Mg–Al–NO₃ LDHs.

Figure S2: TGA of compound LDH-Complex 1.

Figure S3: TGA (dark curve), DTG (green curve) and DSC (pink curve) of LDH-Complex 1.

Figure S4: TGA (dark curve), DTG (green curve) and DSC (pink curve) of Mg-Al-NO₃ LDHs.

Figure S5: [(ThiaSO₂)₂(Mn^{II})₄F]K complex width dimension measured from single crystal X-Ray Diffraction structure in two directions.

Figure S6: ORTEPⁱ diagram of asymmetric unit of tetra-aluminium complex of Al₄(ThiaSO₂)₂ with thermal ellipsoids at 50% probability. Hydrogen atoms and tertbutyl groups are omitted for clarity.

Formula	$C_{92}H_{120}Al_4N_4O_{32}S_8\\$	Ζ'	0.5
$D_{calc.}/\mathrm{g~cm}^{-3}$	1.157	Wavelength/Å	0.71073
μ/mm^{-1}	0.240	Radiation type	Μο Κ _α
Formula Weight	2158.31	$ heta_{min}/^{\circ}$	2.752
Color	colorless	$ heta_{max}$	29.266
Shape	block	Measured Refl's.	68248
Size/mm ³	$0.34 \times 0.15 \times 0.13$	Ind't Refl's	15063
T/K	293.00	Refl's with $I > 2(I)$	8109
Crystal System	monoclinic	R _{int}	0.0862
Space Group	$P2_{1}/n$	Parameters	717
a/Å	13.9486(4)	Restraints	152
b/Å	22.9133(7)	Largest Peak	0.372
c/Å	20.0205(6)	Deepest Hole	-0.308
lpha/°	90	GooF	1.000
β/°	104.421(3)	wR_2 (all data)	0.1567
γ/°	90	wR_2	0.1327
$V/\text{\AA}^3$	6197.1(3)	R_1 (all data)	0.1269
Z	2	R_1	0.0653

 Table S1: Crystal Data of Al4(ThiaSO2)2 complex.

Atom	Atom	Length/Å	_	Atom	Atom	Length/Å
S1	01	1.4648(19)	-	C4	C5	1.384(4)
S1	02	1.429(2)		C5	C6	1.392(4)
S1	C1	1.742(3)		C5	C7	1.538(4)
S1	C36	1.755(3)		C7	C8	1.523(5)
S2	03	1.437(2)		C7	C9	1.537(5)
S2	04	1.439(2)		C7	C10	1.521(5)
S2	C3	1.779(3)		C11	C12	1.420(4)
S2	C16	1.769(3)		C11	C16	1.420(4)
S3	05	1.464(2)		C12	C13	1.391(4)
S3	06	1.429(2)		C13	C14	1.391(4)
S3	C12	1.749(3)		C14	C15	1.379(4)
S3	C21	1.743(3)		C14	C17	1.537(4)
S4	07	1.429(2)		C15	C16	1.383(4)
S4	08	1.442(2)		C17	C18A	1.539(6)
S4	C23	1.772(3)		C17	C18B	1.502(7)
S4	C32	1.766(3)		C17	C19A	1.536(6)
Al1	01	2.068(2)		C17	C19B	1.536(6)
Al1	09	1.837(2)		C17	C20A	1.507(6)
Al1	010	1.8799(19)		C17	C20B	1.530(7)
Al1	013	1.848(2)		C21	C22	1.423(4)
Al1	0141	1.871(2)		C21	C26	1.378(4)
Al1	016	1.928(2)		C22	C23	1.405(4)
Al2	05	2.107(2)		C23	C24	1.395(4)
Al2	011	1.8428(19)		C24	C25	1.386(4)
Al2	012	1.881(2)		C25	C26	1.385(4)
Al2	013	1.827(2)		C25	C27	1.537(5)
Al2	014	1.849(2)		C27	C28A	1.551(6)
Al2	015	1.927(2)		C27	C28B	1.497(7)
09	C31	1.285(3)		C27	C29A	1.516(6)
010	C2	1.299(3)		C27	C29B	1.541(7)
011	C11	1.287(3)		C27	C30A	1.496(6)
012	C22	1.303(3)		C27	C30B	1.501(7)
015	C41	1.223(4)		C31	C32	1.432(4)
016	C44	1.247(3)		C31	C36	1.420(4)
N1	C41	1.318(4)		C32	C33	1.389(4)
N1	C42	1.427(5)		C33	C34	1.390(4)
N1	C43	1.447(5)		C34	C35	1.385(4)
N2	C44	1.314(4)		C34	C37	1.532(4)
N2	C45	1.458(4)		C35	C36	1.392(4)
N2	C46	1.450(5)		C37	C38	1.536(6)
C1	C2	1.421(4)		C37	C39	1.518(6)
C1	C6	1.381(4)		C37	C40	1.511(5)
C2	C3	1.411(4)				
C3	C4	1.387(4)				

 Table S2: Bond Lengths in Å for Al₄(ThiaSO₂)₂ complex.

 Table S3: Bond Angles in ° for Al₄(ThiaSO₂)₂ complex.

Atom	Atom	Atom	Angle/°	Atom	Atom	Aton
01	S1	C1	107.36(12)	C16	S2	C3
01	S1	C36	106.83(12)	05	S3	C12
02	S1	01	116.07(12)	05	S3	C21
02	S1	C1	108.58(13)	06	S3	05
02	S1	C36	109.63(13)	06	S3	C12
C1	S1	C36	108.10(13)	06	S3	C21
03	S2	04	116.68(13)	C21	S3	C12
03	S2	C3	110.65(13)	07	S4	08
03	S2	C16	110.97(13)	07	S4	C23
04	S2	C3	105.45(13)	07	S4	C32
04	S2	C16	106.01(13)	08	S4	C23

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
08	S4	C32	106.24(13)	C8	C7	С9	108.3(3)
C32	S4	C23	107.92(13)	С9	C7	C5	108.0(3)
09	Al1	01	86.21(8)	C10	C7	C5	109.8(3)
09	Al1	010	93.38(9)	C10	C7	C8	109.2(3)
09	Al1	013	94.11(9)	C10	C7	C9	109.9(3)
09	Al1	014^{1}	91.57(9)	011	C11	C12	124.4(3)
09	Al1	016	168.08(10)	011	C11	C16	122.0(3)
010	Al1	01	87.84(8)	C12	C11	C16	113.6(3)
010	Al1	016	89.57(9)	C11	C12	S3	120.9(2)
013	Al1	01	179.26(9)	C13	C12	\$3	115.8(2)
013	AII	010	91.48(9)		C12		123.3(3)
013	ALL	014^{1}	94.38(9)	C14	C13	C12	121.5(3)
015		010	97.30(9)		C14	C12	121.3(3) 116.0(2)
0141		01	17205(10)	C15	C14 C14	C13	110.0(3) 122.6(2)
014^{-1}		010	84 36(9)	C13	C14	C17	122.0(3) 123.5(3)
014	Al1	010	82 36(9)	C11	C16	S2	123.5(3) 1225(2)
011	Al2	05	84 44(8)	C15	C16	52 S2	1155(2)
011	Al2	012	92.13(9)	C15	C16	C11	122.0(3)
011	Al2	014	169.81(10)	C14	C17	C18A	111.4(4)
011	Al2	015	88.13(9)	C18B	C17	C14	110.4(5)
012	Al2	05	86.98(8)	C18B	C17	C19B	112.8(7)
012	Al2	015	168.76(10)	C18B	C17	C20B	111.8(8)
013	Al2	05	175.16(9)	C19A	C17	C14	109.2(4)
013	Al2	011	93.01(9)	C19A	C17	C18A	105.1(6)
013	Al2	012	97.25(9)	C19B	C17	C14	110.8(4)
013	Al2	014	96.06(9)	C20A	C17	C14	111.0(5)
013	Al2	015	93.97(9)	C20A	C17	C18A	105.8(7)
014	Al2	05	86.17(9)	C20A	C17	C19A	114.2(7)
014	Al2	012	91.32(9)	C20B	C17	C14	106.1(5)
014	AI2	015	86.63(10)	C20B	C17	C19B	104.7(7)
015	AI2	05	81.85(9)	C22	C21	\$3	117.1(2)
51	01	AII	119.95(11)	C26	C21	53 C22	119.7(2)
33 C21	05	AIZ	118.9/(11) 124.92(17)	012	C21	C21	123.2(3) 121 E(2)
C3	09		134.03(17)	012	C22	C22	121.5(5)
C2	010	A12	133,88(18)	C23	C22	C23	124.3(3) 114.2(3)
C22	012	A12 A12	135.00(10)	C23	C23	S4	114.2(3) 1214(2)
A12	013	Al1	138.42(11)	C24	C23	S4	116.8(2)
Al2	014	Al1 ¹	140.23(12)	C24	C23	C22	121.6(3)
C41	015	Al2	129.9(2)	C25	C24	C23	123.0(3)
C44	016	Al1	125.7(2)	C24	C25	C27	122.8(3)
C41	N1	C42	120.9(3)	C26	C25	C24	116.2(3)
C41	N1	C43	119.5(4)	C26	C25	C27	121.0(3)
C42	N1	C43	119.6(4)	C21	C26	C25	121.7(3)
C44	N2	C45	120.5(3)	C25	C27	C28A	108.2(4)
C44	N2	C46	121.0(3)	C25	C27	C29B	105.0(5)
C46	N2	C45	118.1(3)	C28B	C27	C25	116.1(6)
C2	C1	S1	117.8(2)	C28B	C27	C29B	109.6(10)
C6	C1	S1	119.5(2)	C28B	C27	C30B	114.6(10)
L6		C2	122.8(3)	C29A	C27	C25	106.9(4)
010	C2		122.7(2) 122.0(2)	C29A	C27	C28A	107.8(6)
C3	C2	C1	122.9(3) 114.4(2)	C30A	C_{27}	C284	103 9(6)
C2	C2	\$2	117.7(2)	C30A	C27	C294	105.7(0) 115.4(6)
C4	C3	S2	116.0(2)	C30B	C27	C25	1093(6)
C4	C3	C2	121.7(3)	C30B	C27	C29B	100 7(10)
C5	C4	C3	123.2(3)	09	C31	C32	121.6(2)
C4	C5	C6	115.9(3)	09	C31	C36	125.1(2)
C4	C5	C7	123.0(3)	C36	C31	C32	113.3(2)
C6	C5	C7	121.0(3)	C31	C32	S4	122.2(2)
C1	C6	C5	122.0(3)	C33	C32	S4	115.6(2)
C8	C7	C5	111.6(3)	C33	C32	C31	122.2(3)

Atom	Atom	Atom	Angle/°
C32	C33	C34	122.9(3)
C33	C34	C37	121.0(3)
C35	C34	C33	116.2(3)
C35	C34	C37	122.5(3)
C34	C35	C36	121.9(3)
C31	C36	S1	120.5(2)
C35	C36	S1	115.9(2)
C35	C36	C31	123.4(3)
C34	C37	C38	110.2(3)
C39	C37	C34	107.8(3)
C39	C37	C38	109.1(4)
C40	C37	C34	112.5(3)
C40	C37	C38	107.7(4)
C40	C37	C39	109.6(4)
015	C41	N1	122.9(3)
016	C44	N2	122.6(3)

Figure S7: SEM images of LDH-NO₃.

Figure S8: Solid state normalized emission ($\lambda ex = 360$ nm, T=293K) spectra with O₂, vacuum or N₂ atmosphere after storage of compound **1** for one year in the ambient atmosphere.

Figure S9: Solid-state normalized excitation ($\lambda_{em} = 636 \text{ nm}$) and emission spectra ($\lambda_{em} = 360 \text{ nm}$) *vs* temperature (77 - 293 K) of **1** with N₂ atmosphere. The excitation spectrum at 293 K is shifted by +0.01 on the normalized y-axis for clarity.

Figure S10: The energy band maxima E_{max} (left axis, in nm) and F_{WHM} (right axis, in nm) *vs* temperature (77 - 293 K) upon photoexcitation at 360 nm of **1** with N₂ atmosphere. Error bar = 1 or 2 nm for E_{max} and F_{WHM} , respectively.

ⁱ L. J. Farrugia, J. Appl. Crystallogr., 45 (2012) 849.