Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Synthesis, Structure, and Catalytic Activity of Dinuclear Aluminium Bis(amidinate) and Bis(guanidinate) Complexes

Andreas Rösch, Fabian Seifert, Valentin Vass, Helmar Görls, and Robert Kretschmer*

New Journal of Chemistry

Table of contents

 2. Protio-ligand synthesis 3. Crystallographic data 4. Cyclic voltammograms 9 5. NMR and IR spectra 15 6. Size exclusion chromatography 52 7. References 	. General	3
 3. Crystallographic data	. Protio-ligand synthesis	4
 4. Cyclic voltammograms	. Crystallographic data	5
5. NMR and IR spectra156. Size exclusion chromatography527. References65	. Cyclic voltammograms	9
6. Size exclusion chromatography 52 7. References 65	. NMR and IR spectra	15
7. References	. Size exclusion chromatography	52
	'. References	65

1. General

All inorganic preparations were performed under an inert atmosphere of dinitrogen by means of standard Schlenk-line techniques, while the samples for analytics were handled in a glovebox (GS-Systemtechnik and MBraun). Traces of oxygen and moisture were removed from the inert gas by passing it over a BASF R 3-11 (CuO/MgSiO₃) catalyst, through concentrated sulfuric acid, over coarsely granulated silica gel, and finally through P_4O_{10} . Dichloromethane, diethyl ether, and *n*-pentane were freshly collected from a solvent purification system by M. Braun (MB SPS- 800). D₆-Benzene and toluene were used as p.a. grade and were distilled from Na/benzophenone prior to use. CDCl₃ was dried by distillation from calcium hydride.

Pyrrolidine, lead(II)oxide, pivaloylchloride, PCl₅, ethylenediamine, 1,3-diaminopropane, 1,4diaminobutane, 1,3(aminomethyl)benzylamine, 2,6-diisopropylaniline, trimethylaluminium (2 M toluene), iodine and ethylaluminium dichloride (1.8 M toluene) were purchased from Sigma- Aldrich. The bis(amidines) (1a, 1b, 1c)^[1] as well as the bis(guanidines) (2a, 2b, 2c, 2d)^[1,2] were prepared according to published procedures.

Characterization. The NMR spectra were recorded with a Bruker Avance 400 spectrometer (T = 300 K) with δ referenced to external tetramethylsilane (¹H, ¹³C, and ²⁷Al). ¹H and ¹³C NMR spectra were calibrated by using the solvent residual peak (CHCl₃: δ (¹H) = 7.26) or (C₆D₆: δ (¹H) = 7.16) and the solvent peak (CDCl₃: δ (¹³C) = 77.16) or (C₆D₆: δ (¹³C) = 128.06), respectively. ²⁷Al NMR spectra were calibrated relative to external Al(NO₃)₃·9H₂O. Notably, the broad resonance at about 60 ppm is a background signal associated with the probe. IR spectra were recorded with a Bruker ALPHA spectrometer equipped with a diamond ATR unit. Elemental analysis was performed with a Vario MICRO cube (Elementar Analysensysteme GmbH); the presence of residual solvent molecules was verified by ¹H NMR spectroscopy.

Size exclusion chromatography (SEC) was performed using a Shimadzu SEC system equipped with a LC-10AD vp pump, a RID-10A detector and a PSS SDV guard/linear M column. THF was used as eluent and a flow rate of 1 mL/min at 30 °C was applied. The instrument was calibrated using PLA or PS standards. Data was processed using WinGPC version 8.32.

2. Protio-ligand synthesis

Synthesis of N,N'-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanamide): A solution of pivaloylchloride (14.5 g, 120 mmol) in dichloromethane (30 mL) was added dropwise to a solution of 1,3(aminomethyl)benzylamine (8.16 g, 60.0 mmol) and trimethylamine (12.1 g, 120 mmol) in dichloromethane (400 mL). After stirring for three days at room temperature and 5 h under reflux, water (200 mL) was added to the white suspension giving a colorless biphasic solution. The organic phase was separated and washed with water (200 mL) and brine (200 mL). The product was dried over Na₂SO₄ and the solvent was removed yielding N,N'-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanamide) (17.5 g, 57.0 mmol, 96%) in analytically pure form as a white crystalline solid.

¹H-NMR (400 MHz, CDCl₃): δ (*ppm*) = 1.19 (s, 18 H, C(CH₃)₃), 4.35 (d, 65.7 Hz, 4 H, (C₆H₄)(CH₂)₂), 6.13 (s, 2 H, NH), 7.09 (d, J = 7.5 Hz, 2 H, CHC₂(CH)₂CH), 7.12(s, 1 H, CHC₂(CH)₂CH) 7.24 (t, J = 7.5 Hz, 1 H, CHC₂(CH)₂CH); ¹³C{H} NMR (101 MHz, CDCl₃): δ (*ppm*) = 27.7 (C(CH₃)₃), 38.7 (C(CH₃)₃), 43.4 (NCH₂C₆H₄), 126.5 (*m*-C₆H₄), 126.7 (*o*-C₆H₄), 129.1 (*o*-C₆H₄), 139.3 (*i*-C₆H₄), 178.5 ((CH₃)₃)C(O)NH).

Synthesis of (1Z,1'Z)-N',N''-(1,3-phenylenebis(methylene))bis(2,2- dimethylpro-panimidoyl chloride): Phosphorus pentachloride (23.9 g, 114 mmol) was added portionwise to a stirred solution of N,N'-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanamide) (17.5 g, 57.3 mmol) in toluene (300 mL). The reaction mixture was stirred at 100 °C for two days giving a yellow solution. The solvent was removed *en vacuo* yielding (1Z,1'Z)-N',N''-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanimidoyl chloride) (14.4 g, 42.0 mmol, 74 %) in analytically pure form as a dark brown oil.

¹H NMR (400 MHz, CDCl₃): δ (*ppm*) = 1.35 (s, 18 H, C(CH₃)₃), 4.73 (d, *J* = 4.8 Hz, 4 H, (CH₂)₂C₆H₄), 7.19-7.41 (m, 4H, C₆H₄); ¹³C{H} NMR (101 MHz, CDCl₃): δ (*ppm*) = 28.5 (C(CH₃)₃), 43.9 (*C*(CH₃)₃), 56.7 (NCH₂C₆H₄), 126.0 (*m*-C₆H₄), 127.5 (*o*-C₆H₄), 128.5 (*o*-C₆H₄), 138.8 (*i*-C₆H₄), 153.7 ((CH₃)₃CC(Cl)N).

Synthesis of (1Z,1'Z)-*N'*,*N''*-(1,3-phenylenebis(methylene))bis(N-(2,6-diisopropyl-phenyl)- 2,2dimethylpropanimidamide) (**1d**): A solution of 2,6-diisopropylaniline (14.9 g, 84.2 mmol) in toluene (40 mL) was added to a stirred solution of (1Z,1'Z)-*N'*,*N''*-(1,3-phenylenebis(methylene))bis(2,2dimethylpropanimidoyl chloride) (14.4 g, 42.1 mmol) in toluene (160 mL). The reaction mixture was refluxed for three days giving a pale brown suspension. The suspension was cooled down to room temperature and the solvent was removed *en vacuo* giving a pale brown waxy solid. The raw product was suspended in ethylacetate (1000 mL) and stirred with a saturated sodium carbonate solution (1200 mL) over 1h giving a clear brown organic phase. The organic phase was separated and dried over sodium sulfate. The solvent was removed giving at first a brown oil that turned into a brown waxy solid after 16 h. The product was recrystallized from MeCN yielding **1d** (12.3 g, 19.7 mmol, 47 %) in analytically pure form as a white crystalline solid.

¹H NMR (400 MHz, CDCl₃): $\delta(ppm) = 1.19$ (d, J = 6.9 Hz, 12 H, CH(CH₃)₂), 1.20 (d, J = 6.9 Hz, 12 H, CH(CH₃)₂), 1.34 (s, 18 H, C(CH₃)₃), 3.03 (sept, J = 6.9 Hz, 4 H CHCH₃)₂), 3.73 (d, J = 5.1 Hz, 4 H, (CH₂)₂C₆H₄), 6.69-7.21 (m, 10H, C₆H₄ + C₆H₃); ¹³C{H} NMR (101 MHz, CDCl₃): $\delta(ppm) = 22.5$ (CH(CH₃)₂), 23.2 (CH(CH₃)₂), 28.5 (C(CH₃)₃), 29.3 (CH(CH₃)₂), 38.8 (C(CH₃)₃), 47.8 (CH₂(C₆H₄)CH₂), 121.1 (m-C₆H₃), 122.0 (p-C₆H₃), 126.7 (m-C₆H₄), 126.9 (o-C₆H₄), 129.1 (o-C₆H₄), 137.3 (o-C₆H₃), 139.6 (i-C₆H₄), 146.2 (i-C₆H₃), 156.4 (NC(C(CH₃)₃)N); IR (ATR): $\tilde{\nu}$ [cm⁻¹] 3442 (w), 2958 (m), 2866 (w), 1653 (s), 1429 (m), 777 (m), 754 (m), 694 (m); HR MS (ESI-TOF): [M + H]⁺ for m/z C₄₂H₆₂N₄ 623.5052, found 623.5032.

3. Crystallographic data

The intensity data were collected on a GV-50 diffractometer with TitanS2 detector from Rigaku Oxford Diffraction (formerly Agilent Technologies) applying a Mo K α radiation (λ = 0.71073 Å fot compound **5d**), an Cu K β radiation (λ = 1.39222 Å for compound **6b**), and an Cu K α radiation (λ = 1.54184 Å for all other compounds). Data were corrected for Lorentz and polarization effects; an analytical absorption corrections were applied to the data.^[3] The structures were solved by direct methods (SHELXT)^[4] and refined by full-matrix least squares techniques against Fo² (SHELXL-2018)^[5]. All hydrogen atoms were included at calculated positions with fixed thermal parameters. The crystal of **5d** and **6b** contains large voids, filled with disordered solvent molecules. The size of the voids are 324 and 973 Å³/unit cell, respectively. Their contribution to the structure factors was secured by back-Fourier transformation using the SQUEEZE routine of the program PLATON^[6] resulting in 78 and 170 electrons/unit cell, respectively. Additional, the crystal of **5d** was a non-merohedral twin. The twin law was determined by PLATON^[6] to (-1.000 0.003 0.000) (0.000 1.000 0.000) (0.000 0.986 -1.000). The contribution of the main component were refined to 0.5015(7). All non-hydrogen atoms were refined anisotropically.^[5] Crystallographic data as well as structure solution and refinement details are summarized in Table S1. OLEX2^[7] was used for structure representations.

Supporting Information available: Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC-2020619 for **3a**, CCDC-2020620 for **3c**, CCDC-2020621 for **4a**, CCDC-2020622 for **4b**, CCDC-2020623 for **4c**, CCDC-2020624 for **5a**, CCDC-2020625 for **5b**, CCDC-2020626 for **5c**, CCDC-2020627 for **5d**, CCDC-2020628 for **6b**, and CCDC-2020629 for **7d**. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [E- mail: <u>deposit@ccdc.cam.ac.uk</u>].

Compound	За	Зс	4a
formula	$C_{40}H_{68}AI_2N_4$	$C_{42}H_{72}Al_2N_4$	$C_{40}H_{66}AI_2N_6$
fw (g·mol⁻¹)	658.94	686.99	684.94
T∕°C	-150(2)	-150(2)	-150(2)
crystal system	monoclinic	monoclinic	monoclinic
space group	P 21/n	P 2 ₁ /n	P 2 ₁ /n
a/ Å	9.1318(2)	9.79107(15)	9.8164(2)
<i>b/</i> Å	13.1042(3)	15.9345(2)	14.8423(2)
c/ Å	17.6741(3)	13.7124(3)	14.3275(3)
α/°	90	90	90
<i>в</i> /°	103.849(2)	93.7704(16)	96.659(2)
γ/°	90	90	90
V/Å ³	2053.49(8)	2134.72(6)	2073.40(7)
Ζ	2	2	2
ρ (g·cm⁻³)	1.066	1.069	1.097
μ (cm ⁻¹)	8.54	8.39	8.79
measured data	11805	22674	13771
Θ _{max} [°]	73.583	73.748	74.129
data with I > 2σ(I)	3693	3863	3569
unique data (R _{int})	3998/0.0188	4231/0.0353	4086/0.0299
wR_2 (all data, on F^2) ^{a)}	0.0936	0.0962	0.0961
$R_1 (I > 2\sigma(I))^{a}$	0.0337	0.0349	0.0355
S ^{b)}	1.036	1.046	1.046
Res. dens./e∙Å⁻³	0.278/-0.217	0.281/-0.224	0.291/-0.237
absorpt method	gaussian	gaussian	gaussian
absorpt corr T _{min} / _{max}	0.918/0.952	0.868/0.947	0.901/0.942
CCDC No.	2020619	2020620	2020621

Table S1. Crystal data and refinement details for the X-ray structure determinations.

Compound	4b	4c	5a	5b
formula	$C_{41}H_{68}AI_2N_6$	$C_{42}H_{70}AI_2N_6$	$C_{36}H_{56}AI_{2}I_{4}N4$	C ₃₇ H ₅₈ Al ₂ I ₄ N ₄
fw (g·mol⁻¹)	698.97	713.00	1106.40	1120.43
T∕°C	-150(2)	-150(2)	-150(2)	-150(2)
crystal system	orthorhombic	monoclinic	triclinic	triclinic
space group	Pccn	P 2 ₁ /n	Ρī	Ρī
a/ Å	29.8017(5)	10.1444(2)	9.5939(3)	10.2273(2)
<i>b/</i> Å	18.1453(4)	15.2810(4)	10.3764(3)	13.8795(3)
c/ Å	15.8102(3)	14.1282(4)	12.9532(4)	17.1873(4)
α/°	90	90	75.031(3)	66.377(2)
в/°	90	91.173(2)	75.198(3)	86.7647(19)
γ/°	90	90	64.216(3)	87.4261(19)
V∕ų	8549.5(3)	2189.65(9)	1106.42(7)	2231.06(10)
Ζ	8	2	1	2
ρ (g·cm⁻³)	1.086	1.081	1.661	1.668
μ (cm ⁻¹)	8.62	8.49	227.04	225.27
measured data	29700	14847	14271	25102
Θ _{max} [°]	74.662	73.552	74.011	74.341
data with I > 2σ(I)	7109	3925	4103	7720
unique data (R _{int})	8496/0.0279	4310/0.0232	4341/0.0420	8791/0.0469
w <i>R</i> ₂ (all data, on F ²) ^{a)}	0.1167	0.0969	0.0805	0.0900
$R_1 (l > 2\sigma(l))^{a}$	0.0415	0.0356	0.0290	0.0341
S ^{b)}	1.037	1.035	1.053	1.037
Res. dens./e∙Å⁻³	0.271/-0.236	0.263/-0.200	0.931/-1.062	0.692/-0.911
absorpt method	gaussian	gaussian	gaussian	gaussian
absorpt corr T _{min} / _{max}	0.848/0.918	0.879/0.951	0.097/0.235	0.115/0.465
CCDC No.	2020622	2020623	2020624	2020625

Continued Table S1. Crystal data and refinement details for the X-ray structure determinations.

Compound	5c	5d	6b	7d
formula	$C_{38}H_{60}Al_2l_4N_4$	C ₄₂ H ₆₀ Al ₂ I ₄ N ₄ [*]	C ₃₇ H ₅₆ Al ₂ I ₄ N ₆ [*]	$C_{42}H_{60}AI_2CI_4N_4$
fw (g·mol⁻¹)	1134.46	1182.50 [*]	1146.43 [*]	816.70
°C	-150(2)	-150(2)	-150(2)	-150(2)
crystal system	monoclinic	Triclinic	orthorhombic	monoclinic
space group	P 2 ₁ /n	Ρī	Pbcn	P 21/c
a/ Å	10.1421(2)	9.4936(3)	17.8187(3)	17.8904(2)
<i>b/</i> Å	16.2451(3)	16.5995(4)	17.3288(2)	15.60507(14)
c/ Å	13.8772(3)	18.3183(5)	16.6003(3)	16.45733(19)
α/°	90	63.478(3)	90	90
в/°	95.334(2)	85.190(3)	90	101.7305(12)
γ/°	90	89.826(3)	90	90
V/Å ³	2276.50(8)	2571.96(14)	5125.78(14)	4498.60(9)
Ζ	2	2	4	4
ρ (g·cm⁻³)	1.655	1.527 [*]	1.486 [*]	1.206
μ (cm ⁻¹)	220.85	24.87 [*]	145.93 [*]	30.15
measured data	13133	10326	47117	33016
Θ _{max} [°]	73.316	25.146	74.377	73.413
data with $I > 2\sigma(I)$	4090	9320	6703	7842
unique data (R _{int})	4508/0.0339	10326/0.0224	7026/0.0533	8841/0.0233
wR ₂ (all data, on F ²) ^{a)}	0.0606	0.0854	0.0678	0.0801
$R_1 (l > 2\sigma(l))^{a}$	0.0251	0.0296	0.0256	0.0296
S ^{b)}	1.024	1.030	1.052	1.038
Res. dens./e∙Å⁻³	0.563/-0.619	1.245/-0.632	1.128/-0.930	0.309/-0.381
absorpt method	gaussian	multi-scan	gaussian	gaussian
absorpt corr T _{min} / _{max}	0.165/0.399	0.93943/1.00000	0.059/0.344	0.525/0.768
CCDC No.	2020626	2020627	2020628	2020629

Continued Table S1. Crystal data and refinement details for the X-ray structure determinations.

[*] derived parameters do not contain the contribution of the disordered solvent. ^{a)} Definition of the *R* indices: $R_1 = (\Sigma || F_0| - |F_c||)/\Sigma |F_0|$; $wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[w(F_0^2)^2]\}^{1/2}$ with $w^{-1} = \sigma^2(F_0^2) + (aP)^2 + bP$; $P = [2F_c^2 + Max(F_0^2]/3;$ ^{b)} $s = \{\Sigma[w(F_0^2 - F_c^2)^2]/(N_0 - N_p)\}^{1/2}$.

4. Cyclic voltammograms

All cyclic voltammetry measurements were performed in THF at 295 K using a three electrode setup, with a platinum disc electrode (working electrode, 3 mm diameter), a non-aqueous Ag/Ag+ electrode (pseudo-reference electrode) and a Pt-wire (auxiliary electrode), in combination with either a Potentiostat EmStat3+ by the company PalmSens, Compact Electrochemical Interfaces or *CHI 600E* Potentiostat by the company CH Instruments, Inc.. Bu₄NPF₆ (0.1 mol/L) was used as supporting electrolyte and all cyclic voltammograms are referenced against the Fc/Fc+ redox couple.

Figure S1 Cyclic voltammogram of 5a vs. Fc/Fc+.

Figure S2 Cyclic voltammogram of **5b** vs. Fc/Fc+.

Figure S3 Cyclic voltammogram of **5c** vs. Fc/Fc+.

Figure S4 Cyclic voltammogram of **5d** vs. Fc/Fc+.

Figure S5 Negative run of the cyclic voltammogram of **5d** vs. Fc/Fc+.

Figure S6 Cyclic voltammogram of **6b** vs. Fc/Fc+.

Table S2 Reduction potentials of the dinuclear aluminum complexes.

Compound number	Reduction potential [V]
5a	-3.23 V
5b	-3.25 V
5c	-3.20 V
5d	-
6b	-3.07 V

5. NMR and IR spectra

Figure S7 ¹H NMR spectrum (400 MHz) of N,N'-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanamide) in CDCl₃ at 300 K

Figure S8 ¹³C NMR spectrum (101 MHz) of N,N'-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanamide) in CDCl₃ at 300 K.

Figure S9 ¹H NMR spectrum (400 MHz) of (1Z,1'Z)-N',N''-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanimidoyl chloride) in CDCl₃ at 300 K.

Figure S10 ¹³C NMR spectrum (101 MHz) of (1Z,1'Z)-N',N''-(1,3-phenylenebis(methylene))bis(2,2-dimethylpropanimidoyl chloride) in CDCl₃ at 300 K.

Figure S11 ^1H NMR spectrum (400 MHz) of 1d in CDCl3 at 300 K.

Figure S12 $^{\rm 13}C$ NMR spectrum (101 MHz) of 1d in CDCl3 at 300 K.

Figure S13 ATR-IR spectrum of 1d.

Figure S14 ¹H NMR spectrum (400 MHz) of 3a in C_6D_6 at 300 K.

Figure S15 13 C NMR spectrum (101 MHz) of **3a** in C₆D₆ at 300 K.

Figure S16 $^{\rm 27}AI$ NMR spectrum (104 MHz) of **3a** in C₆D₆ at 300 K.

Figure S17 ATR-IR spectrum of **3a**.

Figure S18 ^1H NMR spectrum (400 MHz) of 3b in CDCl3 at 300 K.

Figure S19 $^{\rm 13}C$ NMR spectrum (101 MHz) of ${\it 3b}$ in CDCl3 at 300 K.

Figure S20²⁷AI NMR spectrum (104 MHz) of **3b** in CDCl₃ at 300 K.

Figure S21 ATR-IR spectrum of **3b**.

Figure S22 ¹H NMR spectrum (400 MHz) of 3c in CDCl₃ at 300 K.

Figure S23 13 C NMR spectrum (101 MHz) of **3c** in CDCl₃ at 300 K.

Figure S24 ²⁷Al NMR spectrum (104 MHz) of **3c** in CDCl₃ at 300 K.

Figure S25 ATR-IR spectrum of **3c**.

Figure S26 ¹H NMR spectrum (400 MHz) of **3d** in C_6D_6 at 300 K.

Figure S27 ^{13}C NMR spectrum (101 MHz) of **3d** in C₆D₆ at 300 K.

Figure S28 ²⁷Al NMR spectrum (104 MHz) of **3d** in C_6D_6 at 300 K.

Figure S29 ATR-IR spectrum of **3d**.

Figure S30 ¹H NMR spectrum (400 MHz) of 4a in CDCl₃ at 300 K.

Figure S31 13 C NMR spectrum (101 MHz) of **4a** in CDCl₃ at 300 K.

Figure S32 ²⁷Al NMR spectrum (104 MHz) of **4a** in C_6D_6 at 300 K.

Figure S33 ATR-IR spectrum of 4a.

Figure S34 ¹H NMR spectrum (400 MHz) of **4b** in CDCl₃ at 300 K.

Figure S35 $^{\rm 13}C$ NMR spectrum (101 MHz) of ${\it 4b}$ in CDCl3 at 300 K.

Figure S36 ^{27}Al NMR spectrum (104 MHz) of **4b** in C_6D_6 at 300 K.

Figure S37 ATR-IR spectrum of 4b.

Figure S38 ¹H NMR spectrum (400 MHz) of **4c** in CDCl₃ at 300 K.

Figure S39 $^{\rm 13}C$ NMR spectrum (101 MHz) of 4c in CDCl3 at 300 K.

Figure S40 27 Al NMR spectrum (104 MHz) of **4c** in C₆D₆ at 300 K.

Figure S41 ATR-IR spectrum of 4c.

Figure S42 ¹H NMR spectrum (400 MHz) of **4d** in CDCl₃ at 300 K.

Figure S43 13 C NMR spectrum (101 MHz) of **4d** in CDCl₃ at 300 K.

Figure S44 27 Al NMR spectrum (104 MHz) of **4d** in C₆D₆ at 300 K.

Figure S46 ¹H NMR spectrum (400 MHz) of **5a** in CDCl₃ at 300 K.

Figure S47 13 C NMR spectrum (101 MHz) of **5a** in CDCl₃ at 300 K.

Figure S48 $^{\rm 27}AI$ NMR spectrum (104 MHz) of 5a in CDCl3 at 300 K.

Figure S50 ¹H NMR spectrum (400 MHz) of **5b** in CDCl₃ at 300 K.

Figure S51 13 C NMR spectrum (101 MHz) of **5b** in CDCl₃ at 300 K.

Figure S52 $^{\rm 27}AI$ NMR spectrum (104 MHz) of ${\it 5b}$ in CDCl3 at 300 K.

Figure S54 ¹H NMR spectrum (400 MHz) of **5c** in CDCl₃ at 300 K.

-200

-400

-300

Figure S56 ^{27}Al NMR spectrum (104 MHz) of 5c in CDCl3 at 300 K.

Figure S57 ATR-IR spectrum of **5c.**

Figure S58 ¹H NMR spectrum (400 MHz) of **5d** in CDCl₃ at 300 K.

Figure S59 13 C NMR spectrum (101 MHz) of **5d** in CDCl₃ at 300 K.

Figure S60 $^{\rm 27}AI$ NMR spectrum (104 MHz) of ${\it 5d}$ in CDCl3 at 300 K.

Figure S61 ATR-IR spectrum of **5d.**

Figure S62 ¹H NMR spectrum (400 MHz) of **6b** in CDCl₃ at 300 K.

Figure S63 13 C NMR spectrum (101 MHz) of **6b** in CDCl₃ at 300 K.

Figure S64 $^{\rm 27}AI$ NMR spectrum (104 MHz) of **6b** in CDCl₃ at 300 K.

Figure S66 ¹H NMR spectrum (400 MHz) of 7d in CDCl₃ at 300 K.

Figure S67 13 C NMR spectrum (101 MHz) of **7d** in CDCl₃ at 300 K.

Figure S68 $^{27}\!AI$ NMR spectrum (104 MHz) of 7d in CDCl3 at 300 K.

Figure S70 ¹H NMR spectrum (250 MHz) of **3b** in C_6D_6 at 300 K before the addition of benzyl alcohol.

Figure S71 ¹H NMR spectrum (250 MHz) of **3b** in C_6D_6 at 300 K after the addition of one equivalent of benzyl alcohol. The signals at -0.73 and 4.37 ppm account for $Me_2Al(OBn)$.

Figure S72 ¹H NMR spectrum (250 MHz) of **3b** in C_6D_6 at 300 K before the addition of two equivalents of benzyl alcohol. The signals at -0.73 and 4.37 ppm account for $Me_2Al(OBn)$.

Figure S73 ¹H NMR spectrum (250 MHz) of **4b** in C_6D_6 at 300 K before the addition of benzyl alcohol.

Figure S74 ¹H NMR spectrum (250 MHz) of **4b** in C_6D_6 at 300 K after the addition of one equivalent of benzyl alcohol. The signals at -0.73 and 4.37 ppm account for $Me_2AI(OBn)$.

Figure S75 ¹H NMR spectrum (250 MHz) of **4b** in C_6D_6 at 300 K before the addition of two equivalents of benzyl alcohol. The signals at -0.73 and 4.37 ppm account for $Me_2AI(OBn)$.

6. Size exclusion chromatography

Figure S76 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **3a**.

Figure S77 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **3a**.

Figure S78 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **3b**.

Figure S79 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **3b**.

Figure S80 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **3c**.

Molar mass D

Figure S81 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = 1*10⁻² M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **3c**.

Figure S82 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = 1*10⁻² M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **3d**.

Figure S83 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = 1*10⁻² M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **3d**.

Figure S84 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = 1*10⁻² M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **4a**.

Figure S85 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **4a**.

Figure S86 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **4b**.

Molar mass D

Figure S87 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **4b**.

Molar mass D

Figure S88 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **4c**.

Molar mass D

Figure S89 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = 1*10⁻² M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **4c**.

Molar mass D

Figure S90 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 80 °C, 25 h, catalyst **4d**.

Figure S91 SEC Elugram of PLA, conditions: Toluene 1.5 mL, catalyst / monomer = 1:200, [catalyst] = $1*10^{-2}$ M, [monomer] = 2 M, temp. = 90 °C, 25 h, catalyst **4d**.

Figure S92 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **3a**.

Figure S93 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **3b**.

Figure S94 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **3c**.

Figure S95 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **3d**.

Figure S96 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **4a**.

Figure S97 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **4b**.

Figure S98 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **4c**.

Figure S99 SEC Elugram of PCL, conditions: Toluene 2.1 mL, catalyst / monomer = 1:200, [catalyst] = $7*10^{-2}$ M, [monomer] = 1.4 M, temp. = 70 °C, 8 h, catalyst **4d**.

7. References

- [1] A. Rösch, S. H. F. Schreiner, P. Schüler, H. Görls, R. Kretschmer, *Dalton Trans.* **2020**, *49*, 13072.
- [2] V. Vass, M. Dehmel, F. Lehni, R. Kretschmer, Eur. J. Org. Chem. 2017, 5066.
- [3] CrysAlisPro, version 171.38.42b, Agilent Technologies Inc., Oxford, GB, 2015
- [4] G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
- [5] G. M. Sheldrick, Acta Cryst. 2015, C71, 3.
- [6] A. L. Spek, Acta Cryst. 2015, C71, 9.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.