Synthesis of SO₄²⁻-Fe₃O₄/FeS coating catalyst on TC4 titanium alloy for

enhanced Fenton-like degradation of phenol

Xiao Zhang¹, Jiankang Wang², Zhongping Yao^{1*}, Changju Chen¹, Yang Zhou¹ and Zhaohua Jiang¹

¹School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water

Resource and Environment, Harbin Institute of Technology, Harbin 150001, China

²College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China

*Corresponding authors.

yaozhongping@hit.edu.cn

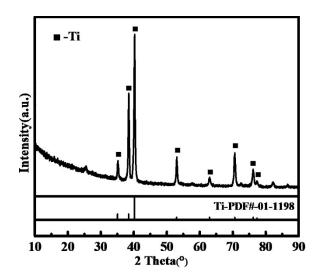


Fig. S1 XRD patterns of PEO coatings before S modification

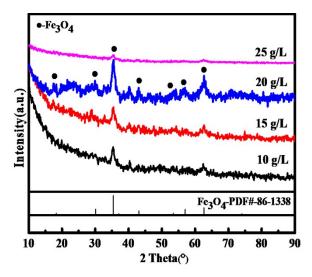


Fig. S2 XRD patterns of PEO coatings prepared with different contents of $Na_2S_2O_3$ · $5H_2O$. (Other condition:

15

g/L

 $K_3[Fe(CN)_6])$

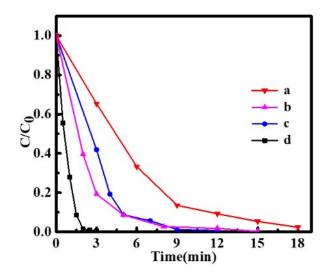
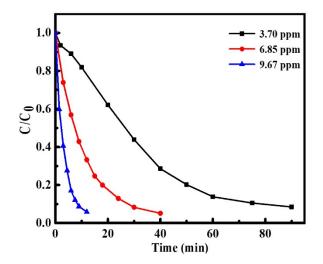



Fig. S3 Degradation curves of phenol by PEO coatings prepared with different iron and sulfur sources: 15 g/L K_3 [Fe(CN)₆], 15 g/L $Na_2S_2O_3 \cdot 5H_2O$ (a), 20 g/L K_3 [Fe(CN)₆], 15 g/L $Na_2S_2O_3 \cdot 5H_2O$ (b), 15 g/L K_3 [Fe(CN)₆], 20 g/L $Na_2S_2O_3 \cdot 5H_2O$ (c) and 20 g/L K_3 [Fe(CN)₆], 20 g/L $Na_2S_2O_3 \cdot 5H_2O$ (d)

Fig. S4 Homogeneous Fenton degradation of phenol at different Fe^{2+} concentrations. (Other conditions: pH 6.0, H₂O₂ 6 mmol/L, initial concentration of phenol 35 mg/L, reaction temperature 30°C)

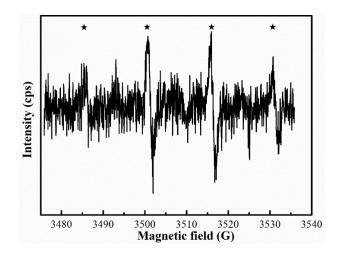


Fig. S5 EPR spectrum of DMPO-·OH in PEO coating/H_2O_2 system