Synthesis of $\text{SO}_4^{2-}\text{Fe}_3\text{O}_4/\text{FeS}$ coating catalyst on TC4 titanium alloy for enhanced Fenton-like degradation of phenol

Xiao Zhang1, Jiankang Wang2, Zhongping Yao1*, Changju Chen1, Yang Zhou1 and Zhaohua Jiang1

1School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China

2College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China

*Corresponding authors.

yaozhongping@hit.edu.cn
Fig. S1 XRD patterns of PEO coatings before S modification
Fig. S2 XRD patterns of PEO coatings prepared with different contents of Na$_2$S$_2$O$_3$·5H$_2$O. (Other condition: 15 g/L K$_3$[Fe(CN)$_6$])
Fig. S3 Degradation curves of phenol by PEO coatings prepared with different iron and sulfur sources: 15 g/L K$_3$[Fe(CN)$_6$], 15 g/L Na$_2$S$_2$O$_3$·5H$_2$O (a), 20 g/L K$_3$[Fe(CN)$_6$], 15 g/L Na$_2$S$_2$O$_3$·5H$_2$O (b), 15 g/L K$_3$[Fe(CN)$_6$], 20 g/L Na$_2$S$_2$O$_3$·5H$_2$O (c) and 20 g/L K$_3$[Fe(CN)$_6$], 20 g/L Na$_2$S$_2$O$_3$·5H$_2$O (d)
Fig. S4 Homogeneous Fenton degradation of phenol at different Fe$^{2+}$ concentrations. (Other conditions: pH 6.0, H$_2$O$_2$ 6 mmol/L, initial concentration of phenol 35 mg/L, reaction temperature 30°C)
Fig. S5 EPR spectrum of DMPO--OH in PEO coating/H₂O₂ system