Palladium nanoparticles *in situ* synthesized on *Cyclea barbata* pectin as a heterogeneous catalyst for Heck coupling in water, reduction of nitrophenols and alkynes.

Van-Dung Le^{a†}, T. Cam-Huong Le^{a,b†}, Van-Trung Chau^b, T. Ngoc-Duyen Le^b,

Chi-Hien Dang^{a,b*}, T. To-Nguyen Vo^b, Trinh Duy Nguyen^c and Thanh-Danh Nguyen^{a,b*}

^aGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

^bInstitute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam.

^cCenter of Excellence for Green Energy and Environmental Nanomaterials, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam.

*Corresponding author: Thanh-Danh Nguyen, danh5463bd@yahoo.com; ntdanh@ict.vast.vn; Chi-Hien Dang, dangchihien@gmail.com

[†] These authors contributed equally to this study.

1

Supplementary Data

Table S1. Comparison of the results obtained from various palladium-based

 catalyst system for the Heck coupling reaction in water.

Catalyst	T (°C)	Time (h)	[Pd]	Yield	Ref.
			(% mol)	(%)	
PTFE-Pd NPs	90	15	1.0	91	[1]
Pd -TOTPS	150	6	0.03	60	[2]
PdNPs@PS-	100	6	0.2	42	[3]
IL[Cl]					
Pd@Cellulose	90	6	0.12	98	[4]
Pd@ PS-PEG	50	20	10	92	[5]
PdNPs@Pectin	90	6	0.5	90	This work

 Table S2. Summary for catalytic performance of PdNPs@Pectin for reduction of nitrophenols.

Substrates	time (s)	k (10 ⁻³ , s ⁻¹)	R ²	TON	TOF (10 ⁻⁵ , s ⁻¹)
o-nitrophenol	600	2.93	0.972	0.0289	4.82
<i>m</i> -nitrophenol	360	2.88	0.973	0.0289	8.03
<i>p</i> -nitrophenol	840	2.42	0.991	0.0289	3.44

Figure S1. UV-Vis spectra of *C. barbata* pectin, Pd²⁺@Pectin and PdNPs@Pectin

Catalytic activity for Heck Coupling

1,2-diphenylethene. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 7.53 (m, 4H); 7.37 (m, 4H); 7.27 (m, 2H); 7.11 (s, 2H).

1-methyl-4-styrylbenzene. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 7.51 (m, 2H); 7.42 (d, J 8.5 Hz, 2H); 7.36 (m, 2H); 7.25 (m, 1H), 7.17 (d, J 7.5 Hz, 2H), 7.07 (dd J 16.5, 3.5 Hz, 2H), 2.36 (s, 3H).

1-fluoro-4-styrylbenzene. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 7.50 (m,

4H); 7.37 (m, 2H); 7.28 (m, 1H); 7.09 (m, 4H).

1,2-di-p-tolylethene. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 7.40 (d, J 8Hz,

4H); 7.16 (d, J 8 Hz, 4H); 7.03 (s, 2H); 2.35 (s, 6H).

1-fluoro-4-(4-methylstyryl)benzene. ¹H-NMR (CDCl₃, 500 MHz, ppm): $\delta =$

7.47 (m, 2H); 7.39 (d, J 8.0 Hz, 2H); 7.17 (d, J 7.5 Hz, 2H); 7.05 (m, 2H), 7.00 (m, 2H), 2.36 (s, 3H).

1,2-bis(4-fluorophenyl)ethene. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 7.47 (m, 4H); 7.01 (m, 4H); 6.97 (s, 2H).

Catalytic activity for reduction of alkynes

(*Z*)-2-(*hex-3-en-1-yloxy*)*tetrahydro-2H-pyran*. ¹H-NMR (CDCl₃, 500 MHz, ppm): 5.49-5.44 (dtt, *J*₁ 11Hz, *J*₂ 7Hz, J₃ 1.5 Hz 1H), 5.39-5.33 (dt, *J*₁ 10.5 Hz, *J*₂ 7.5 Hz, J₃ 1.5 Hz, 1H), 4.59 (m, 1H), 3.90-3.71 (m, 2H), 3.43-3.40 (m, 2H), 2.37-2.33 (m, 2H), 2.08-2.05 (m, 2H), 1.85-1.49 (m, 6H), 0.98-0.95 (t, J 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 125 MHz, ppm): 133.6, 125.0, 98.7, 67.1, 62.3, 30.7, 27.9, 25.5, 20.6, 19.6.

Figure S2. The two protons *(Z)* configuration of *(Z)*-2-(hex-3-en-1-yloxy)tetrahydro-2H-pyran.

2-(*but-3-en-1-yloxy*)*tetrahydro-2H-pyran*. Bp: 85°C/10 mmHg. $n_D^{29} = 1.449$. GC-MS, *m/z*: 41, 55, 70, 85 (100), 101, 115, 129, 155.

Figure S3. GC-MS spectrum of 2-(but-3-en-1-yloxy)tetrahydro-2Hpyran from reduction of 2-(but-3-yn-1-yloxy)tetrahydro-2H-pyran

Figure S5. GC-MS spectrum of *cis*-1,2-diphenylethene from reduction of 1,2-diphenylethyne

Figure S6. GC-MS spectrum *cis*-1-methyl-4-styrylbenzene from reduction of 1-methyl-4-(phenylethynyl)benzene

Figure S7. ¹H NMR spectrum of 2-(dodec-11-yn-1-yloxy)tetrahydro-2H-pyran (**3**)

Figure S8. ¹³C NMR spectrum of 2-(dodec-11-yn-1-yloxy)tetrahydro-2H-pyran (**3**)

Figure S9. ¹H NMR spectrum of 2-(dodec-11-en-1-yloxy)tetrahydro-2H-pyran (**4**)

Figure S10. ¹³C NMR spectrum of 2-(dodec-11-en-1-yloxy)tetrahydro-2H-pyran (4)

Figure S11. ¹H NMR spectrum of (*Z*)-11-hexadecenyl acetate (5)

Figure S12. ¹³C NMR spectrum of (*Z*)-11-hexadecenyl acetate (**5**)

Figure S13. ¹H NMR spectrum of 2-(dodec-3-yn-1-yloxy)tetrahydro-2H-pyran (8)

Figure S16. The two protons (*Z*) configuration of (*Z*)-dodec-3-en-1-ol (9)

Figure S19. The two protons *(E)*-configuration of *(Z)*-Dodec-3-en-1-yl *(E)*-2-butenoate (10)

Figure S20. The two protons (*Z*) configuration of (*Z*)-Dodec-3-en-1-yl (*E*)-2-butenoate (10)

Figure S21. ¹³C NMR spectrum of (*Z*)-Dodec-3-en-1-yl (*E*)-2-butenoate (10)

References

- [1] A. Ohtaka, M. Kawase, S. Aihara, Y. Miyamoto, A. Terada, K. Nakamura,
 G. Hamasaka, Y. Uozumi, T. Shinagawa, O. Shimomura, R. Nomura, ACS Omega, 2018, 3 (8), 10066–10073.
- [2] S. Jagtap, R. Deshpande, Tetrahedron Letters, 2013, 54, 2733–2736.
- [3] K. Qiao, R. Sugimura, Q. Bao, D. Tomida, C. Yokoyama, *Catalysis Communications*, 2008, 9, 2470–2474.
- [4] Y. Xu, L. Zhang, Y. Cui, Journal of Applied Polymer Science, 2008, 110, 2996–3000.
- [5] Y. Uozumi, T. Kimura, Synlett 2002, 12, 2045–2048.