Supporting Information

Soluble Polyfluorene Dots as Photocatalyst for Light-Driven Methylene Blue Degradation and Hydrogen Generation

Junfeng Yang a, He Su a, Yanhui Dong a, Yunhao Fu a, Xingyuan Guo c, Hang Sun b and Shengyan Yin* a

aState Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China

bKey Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China

cCollege of Physics Jilin University, Changchun, Jilin 130012, China

*Corresponding Author: syyin@jlu.edu.cn
Fig. S1. The photographs of (a) pure PFO and (b) PFO Pdots in water.

Fig. S2. UV-Vis absorption spectra of (a) pure MB and (b) MB with PFO-Pdots in dark.
Fig. S3. UV-Vis absorption spectra of (a) MB and PFO and (b) MB and PFO-Pdots under illumination of a continuous simulated solar light.

Table S1. Hydrogen production peak areas of pure PFO and PFO-Pdots in water.

<table>
<thead>
<tr>
<th>Peak area</th>
<th>0 h</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
<th>5 h</th>
<th>6 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2238</td>
<td>0.2548</td>
<td>0.2573</td>
</tr>
<tr>
<td>PFO Pdots</td>
<td>0</td>
<td>1.1526</td>
<td>2.2575</td>
<td>4.4904</td>
<td>6.4011</td>
<td>8.2659</td>
<td>10.0656</td>
</tr>
</tbody>
</table>