Supporting information

Plasma-induced black bismuth tungstate as a photon harvester for photocatalytic carbon dioxide conversion

Kang Zhong,^a Anqi Zhou,^a Guli Zhou,^a Qidi Li,^a Jinman Yang,^a Zhaolong Wang,^a Xingwang Zhu,^a Junchao Qian,^b Yingjie Hua,^c Huaming Li^{*a} and Hui Xu^{*a}

a School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China.

b School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

c the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of

Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal

University, Haikou, 571158, China

*Corresponding author.

E-mail: lihm@ujs.edu.cn (H. Li), xh@ujs.edu.cn (H. Xu)

Characterization

The X-ray diffraction (XRD) with Cu K α (λ = 1.5418 Å) as a source is a Shimadzu XRD-6100 diffractometer, which was used to characterize phases structures of the asprepared photocatalysts. The range of 20 is from 10° to 80°, and the scan rate is 0.1167° s⁻¹. The photocatalyst morphology was observed by field emission scanning electron microscope (FE-SEM, JEOL-JSM-7001F, Japan) and transmission electron microscope (200 kV) with an accelerating voltage of 10kV. X-ray photoelectron spectroscopy (XPS) of the photocatalyst was obtained by using an ESCALab MKII spectrometer with 20 kV of Mg K α radiation. Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) was performed to measure the optical properties of the as-prepared photocatalysts by using a UV-vis spectrophotometer (Shimadzu UV-2450, Japan). A QuantaMaster and TimeMaster Spectrofluorometer was used to investigate photoluminescence (PL) spectroscopy. In-situ FTIR spectra were obtained by using a Thermo Scientific Nicolet iS50.

Photoelectrochemical measurement

An electrochemical workstation of 760B (CHI760B, Chenhua Instrument Company, Shanghai, China) was performed on for electrochemical measurement using a three-electrode system. Photocurrent and electrochemical impedance spectroscopy (EIS) measurements of samples were carried out on it. In the three-electrode system of electrochemical workstation, the reference electrode was a saturated calomel electrode (SCE), and the platinum wire was used as the counter electrode. The working electrode was prepared as follows: 5 mg photocatalyst powder dispersed in 1 mL ethanol solution, then 20 μ L suspended coated in 10 × 5 mm indium-tin-oxide (ITO) glass and dried for 60°C to remove ethanol for 12 h. Put above three electrodes into the electrolyte solution of 0.2 M Na₂SO₄. The light source is a 300 W Xe lamp (PLS-SXE3, Beijing Perfectlight). At room temperature, started electrochemical measurement applied no voltage between the electrodes.

Photocatalytic CO₂ reduction evaluation

Photocatalytic CO₂ reduction was carried out on a photoreaction system (Labsolar-6A, Beijing Perfectlight, Fig. S8). The powder (10 mg) catalyst was dissolved in a 300 mL reactor with a quartz glass cover, including 2 mL of TEOA as sacrificial electron donor, 4 mL of deionized water, and 6 mL of MeCN. Ultrasound the prepared solution at room temperature for 10 min. Connect the reactor to the photoreaction system. After the air in the reaction system was cleared away, high-purity CO₂ was introduced into the system until the pressure reached 70 kPa and circulated for 60 min to achieve uniform distribution of CO₂ gas. The temperature of photocatalytic CO₂ reduction was set at 5°C by the cooling water circulation system, promoting the adsorption of CO₂. A 300 W Xe lamp (PLS-SXE3, Beijing Perfectlight) was employed as the light source. A gas chromatograph (GC2002, KeChuang, Shanghai) equipped with thermal conductivity detector (TCD) and hydrogen flame ionized detector (FID) was used to determine the amount of the gas product.

Light source	Catalyst	Reaction medium	Products	Activity	Reference
300 W Xe lamp	Bi ₂ WO ₆	Liquid-solid, water and TEOA	СО	56.5 μmol g ⁻¹ h ⁻¹	This Work
300 W Xe lamp	Ti ₃ C ₂ / Bi ₂ WO ₆	Liquid-solid, water	CH4	1.78 μmol g ⁻¹ h ⁻¹	[1]
300 W Xe lamp	BiOBr/ ACSs	Liquid-solid, water	СО	23.74 µmol g ⁻¹ h ⁻¹	[2]
300 W Xe lamp	BiOIO3	Liquid-solid, water	СО	6.30 µmol g ⁻¹ h ⁻¹	[3]
300 W Xe lamp	Bi4O5Br2	Gas-solid, water	СО	3.16 µmol g ⁻¹ h ⁻¹	[4]
visible light $(\lambda > 420 \text{ nm})$	BVO/C /Cu ₂ O	Gas-solid, water	СО	3.01 µmol g ⁻¹ h ⁻¹	[5]

Table S1. Comparison of the performances with other catalysts for

photocatalytic CO₂ reduction

Fig. S3 (a) UV-vis diffuse reflection spectrum and (b) estimated bandgap of BT and X-BT (X=3, 6, 9).

Fig. S4 SEM image of 6-BT.

Fig. S5 HRTEM image (a) and Bi QDs size distribution (b) of 6-BT.

Fig. S6 XRD patterns of 6-BT before and after the photocatalytic CO₂ reduction reaction.

Fig. S7 SEM images of 6-BT before (a) and after (b) the photocatalytic CO₂ reduction reaction.

Fig. S8 Photo of photocatalytic reaction equipment.

Reference

- 1. S. Cao, B. Shen, T. Tong, J. Fu and J. Yu, *Adv. Funct. Mater.*, 2018, **28**, 1800136.
- 2. K. Liu, X. Zhang, C. Zhang, G. Ren, Z. Zheng, Z. Lv and C. Fan, *RSC Adv.*, 2019, **9**, 14391-14399.
- 3. H. Huang, F. Chen, A. H. Reshak, S. Auluck and Y. Zhang, *Appl. Surf. Sci.*, 2018, **458**, 129-138.
- 4. X. Jin, C. Lv, X. Zhou, H. Xie, S. Sun, Y. Liu, Q. Meng and G. Chen, *Nano Energy*, 2019, **64**, 103955.
- 5. C. Kim, K. M. Cho, A. Al-Saggaf, I. Gereige and H.-T. Jung, ACS Catal., 2018, 8, 4170-4177.