Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

1. General

The chemical reagents were supplied by commercial company (Aladdin LLC). The organic solvents were treated by standard anhydrous procedure before use. Pre-coated glass plates were applied for TLC analysis. Column chromatography was carried out on silica gel (200-300 mesh). NMR spectra were performed in the solvent of CDCl₃ or DMSO-d₆ on the Bruker-ARX 600 instrument at 26 °C. Bruker mass spectrometer was used for recording the MS spectra. Elemental analyses were analysed on Vario EL IIIElemental Analyzer. UV-Vis spectra were measured on Varian UV-Vis spectrometer. Fluorescence spectra were examined on the Hitachi F-4500 spectrometer. Compound **1** and **2a-2c** were prepared according to the literatures, respectively. (*Organic & Biomolecular Chemistry*, 2017, **15**, 6006-6013, and *J. Incl. Phenom. Macrocycl. Chem.*, 2010, **67**, 49-54).

2. The synthetic process and characteristic spectra.

Scheme S1 The synthesis of compounds 3a, 3b and 3c

2.1 Synthesis of compounds 3a, 3b and 3c.

Under N₂ atmosphere, the mixture of compound **1** (0.22 g, 1 mmol) and compound **2a** (**2b** or **2c**) (0.5 mmol) was stirred and refluxed in 20 mL of dry MeCN for 24 h with dry K_2CO_3 (0.41g, 3 mmol) and KI (0.10g, 0.6 mmol) as catalyst. The disappearance of starting materials was examined by TLC detection. Subsequently, 30 mL of HCl solution (1 M) and 30 mL of CH₂Cl₂ were added in reaction system under stirring. Then the mixture was partitioned and the organic layer was dried by anhydrous MgSO₄. The organic layer was further concentrated under reduced pressure. The residue was purified by rapid column chromatography (eluent: CH₂Cl₂). compounds **3a**, **3b** and **3c** were obtained as pale yellow solid in yields of 72%, 70% and 75%, respectively.

Compound **3a**: ¹H NMR (400 MHz, DMSO-d₆) δppm: 3.28 (s, 4H, NCH₂), 4.54(s, 4H, OCH₂), 7.09 (d, 4H, *J* = 8.0Hz,ArH), 7.29 (d, 4H, *J*= 8.0Hz, ArH), 7.43-7.53 (m, 4H, CH and ArH), 7.69 (d, 4H, *J* = 8.0Hz,ArH), 7.90 (m, 4H, ArH), 8.26(s, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δppm: 168.30, 158.92, 141.36, 134.35, 130.74, 130.42, 130.05, 129.38, 129.04, 127.65, 115.85, 110.36, 67.41, 55.34; MALDI-MS (C₃₆H₃₀N₄O₄) [M]⁺: Calcd.: 582.227. found:605.195 [M+Na]⁺; Anal. calcd for C₃₆H₃₀N₄O₄: C 74.21, H 5.19, N 9.62; found C 74.25, H 5.22, N 9.56%.

Compound **3b**: ¹H NMR (400 MHz, DMSO-d₆) δppm: 1.44(s, 4H, CH₂), 3.14 (s, 4H, NCH₂), 4.54(s, 4H, OCH₂), 7.09 (d, 4H, *J* = 8.0Hz, ArH), 7.29 (d, 4H, *J*= 8.0Hz, ArH), 7.47-7.54 (m, 4H, CH and ArH), 7.71 (d, 4H, *J* = 8.0Hz, ArH), 7.90 (t, 4H, *J* = 4.0Hz, ArH), 8.18(s, 2H, NH); ¹³C NMR (100

MHz, DMSO-d₆) δppm: 167.64, 158.81, 141.45, 134.01, 130.76, 130.41, 130.06, 129.39, 129.05, 127.67, 115.85, 110.39, 67.49, 55.34, 26.96; MALDI-MS (C₃₈H₃₄N₄O₄) [M]⁺: Calcd.: 610.258. found: 611.061[MH]⁺; Anal. calcd for C₃₈H₃₄N₄O₄: C 74.73, H 5.61, N 9.17; found C 74.76, H 5.65, N 9.11%.

Compound **3c**: ¹H NMR (400 MHz, DMSO-d₆) δ ppm: 1.23(bs, 4H, CH₂), 1.41(bs, 4H, CH₂), 3.12 (bs, 4H, NCH₂), 4.50(s, 4H, OCH₂), 7.09 (d, 4H, *J* = 8.0Hz, ArH), 7.29 (d, 4H, *J* = 8.0Hz, ArH), 7.47-7.54 (m, 4H, CH and ArH), 7.71 (d, 4H, *J* = 8.0Hz, ArH), 7.91 (t, 4H, *J* = 4.0Hz, ArH), 8.11(s, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ ppm: 167.60, 158.77, 141.43, 133.96, 130.69, 130.40, 130.06, 129.37, 129.05, 127.65, 115.97, 113.11, 67.27, 56.52, 29.44, 26.42; MALDI-MS (C₄₀H₃₈N₄O₄) [M]⁺: Calcd.: 638.289. found: 638.976[M]⁺, 661.293[M+Na]⁺; Anal. calcd for C₄₀H₃₈N₄O₄: C 75.21, H 6.00, N 8.77; found C 75.27, H 6.04, N 8.69%.

Figure S1. The ¹H NMR spectrum of compound **3a**

Figure S3. The ¹H NMR spectrum of compound 3c

Figure S4. The ¹³C NMR spectrum of compound **3a**

Figure S5. The ¹³C NMR spectrum of compound **3b**

Figure S6. The ¹³C NMR spectrum of compound **3**c

Figure S7. MALDI-MS spectrum of compound 3a

Figure S8. MALDI-MS spectrum of compound **3b**

Figure S9. MALDI-MS spectrum of compound 3c

Figure S10 The UV-Vis absorption spectra of compound **3a** in different solvents $(1.0 \times 10^{-5} \text{ M})$

Figure S11 The UV-Vis absorption spectra of compound **3b** in different solvents $(1.0 \times 10^{-5} \text{ M})$

Figure S12 The UV-Vis absorption spectra of compound 3c in different solvents $(1.0 \times 10^{-5} \text{ M})$

Figure S13 The emission spectra of compound 3a in different solvents (1.0×10⁻⁵ M) with the excitation wavelength of 320 nm.

Figure S14 The emission spectra of compound 3b in different solvents $(1.0 \times 10^{-5} \text{M})$ with the excitation wavelength of 320 nm.

Figure S15 The emission spectra of compound 3c in different solvents (1.0×10⁻⁵M) with the excitation wavelength of 320 nm.

Figure S16 (left) The emission spectra of compound **3a** in H₂O/THF mixtures with different water fractions ($\lambda_{ex} = 320$ nm, 1.0×10^{-6} M); (right) The changes in peak intensities with different water fractions in H₂O/THF mixtures (*I* and *I*_o were the fluorescence intensities in H₂O/THF mixtures with different water fractions and in pure THF solution); Inserted: the corresponding fluorescence images.

Figure S17 (left) The emission spectra of comp ound **3c** in H₂O/THF mixtures with different water fractions ($\lambda_{ex} = 320$ nm, 1.0×10^{-6} M); (right) The changes in peak intensities with different water fractions in H₂O/THF mixtures (*I* and *I_o* were the fluorescence intensities in H₂O/THF mixtures with different water fractions and in pure THF solution); Inserted: the corresponding fluorescence images.

Figure S18 Fluorescence spectra of the compound **3a** in H₂O/THF mixtures with 70% of H₂O (λ_{ex} = 320 nm, 1.0×10⁻⁶ M) in the presence of various metal ions and biomolecules (1.0×10⁻⁶ M).

Figure S19 Fluorescence spectra of the compound **3c** in H₂O/THF mixtures with 70% of H₂O (λ_{ex} = 320 nm, 1.0×10⁻⁶ M) in the presence of various metal ions and biomolecules (1.0×10⁻⁶ M).

Figure S20 The influence of pH on the maximum fluorescence intensities of **3b** and **3b** with cytosine in H₂O/THF mixtures with 70% of H₂O ($\lambda_{ex} = 320$ nm, 1.0×10^{-6} M). I_o was the fluorescence intensities of **3b** or **3b** with cytosine at pH = 7, *I* were the fluorescence intensities of **3b** or **3b** with cytosine at corresponding pH values.

Figure S21 The Job's plot of compound **3b** with cytosine in H₂O/THF mixtures with 70% of H₂O (The total concentration was 1.0×10^{-6} M, I₀ and I were the fluorescence intensity of compound **3b** before and after sensing cytosine)

Figure S22 Cell viability of MCF-7 cells before and after incubated with compound **3b** $(1.0 \times 10^{-6} \text{ M})$ for 12 h and 24 h.

Method	LOD	Reference	Selectivity
Surface plasmon resonance sensor	10 nM	[22]	well
Electrocatalysis of uric acid	9.31 µM	[16]	well
Electroanalysis of functionalized	0.23 μΜ	[17]	well
graphene			
Glassy carbon electrode confined	65 nM	[18]	Not
conducting polymer			meentioned
Graphite-Based Nanocomposite	0.9 μΜ	[13]	weak
Electrochemical Sensor			
fluorescent DNA sensor	5.5 nM	[24]	Well
fluorescence sensor of thiophene-	2.1 nM	[23]	weak
based organic nanoparticles			
AIE fluorescence sensor	0.10 μΜ	This work	well

Table S1 Comparison of other methods for sensing cytosine

_

_

Figure S23 The UV-Vis absorption spectra of compound 3b in H_2O/THF mixtures with 70% of H_2O (1.0×10⁻⁶ M) in the presence of various equivalent concentrations of cytosine.

Figure S24 The Molecular theoretical orbital amplitude plots of HOMO and LUMO energy levels of compound 3b before and after binding cytosine