Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Ultrasound-Assisted Diversion of Nitrobenzene Derivatives to their Aniline Equivalents through Heterogeneous Magnetic Ag/Fe₃O₄-IT Nanocomposite Catalyst

Reza Taheri-Ledari¹, Jamal Rahimi¹, Ali Maleki^{1,} and Ahmed Esmail Shalan^{2,3,*}*

¹ Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran.

² Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt.

³ BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.

*Corresponding authors. (A. M) Tel.: +98 21 77240640-50; fax: +98 21 73021584. E-mail address: <u>maleki@iust.ac.ir</u>; (A. E. S.) E-mail: <u>a.shalan133@gmail.com</u>

Author's ORCIDs:
 Reza Taheri-Ledari: <u>https://orcid.org/0000-0002-6511-9411</u>
 Ali Maleki: <u>https://orcid.org/0000-0001-5490-3350</u>
 Ahmed Esmail Shalan: <u>https://orcid.org/0000-0002-3424-1609</u>

Content	Page
Table S1. Applied materials and equipment in this project	S 3
Figure S1. VSM curves of IT-functionalized Ag/Fe ₃ O ₄ nanocatalyst and the neat Fe ₃ O ₄ NPs	S4
Figure S2. FT-IR spectrum of recovered IT-functionalized Ag/Fe ₃ O ₄ nanocatalyst	S5
Figure S3. EDX spectrum of recovered IT-functionalized Ag/Fe ₃ O ₄ nanocatalyst	S6
Figure S4. SEM image of recovered IT-functionalized Ag/Fe ₃ O ₄ nanocatalyst	S7
Figure S5. Spectral data and ¹ H-NMR spectrum of benzene-1,4-diamine	S8
Figure S6. ¹³ C-NMR spectrum of benzene-1,4-diamine	S9
Figure S7. Spectral data and ¹ H-NMR spectrum of benzene-1,3-diamine	S10
Figure S8. ¹³ C-NMR spectrum of benzene-1,3-diamine	S11
Figure S9. Spectral data and ¹ H-NMR spectrum of 4-aminophenol	S12
Figure S10. ¹³ C-NMR spectrum of 4-aminophenol	S13
Figure S11. Spectral data and ¹ H-NMR spectrum of 3,4-diaminobenzoic acid	S14
Figure S12. ¹³ C-NMR spectrum of 3,4-diaminobenzoic acid	S15

 Table S1. Applied materials and equipment in this project.

Material / equipment	Brand
Silver nitrate	Sigma Aldrich, ≥99.0%
Iron(II) chloride tetrahydrate	Sigma Aldrich, ≥99%
Iron(II)) chloride hexahydrate	Sigma Aldrich, ≥99%
5-Chloro-2-methyl-4-isothiazolin-3-one	Santa Cruz Biotechnology
Ammonia	Merck, 25%
APTES	Sigma Aldrich, 99%
Solvents	Merck
Nitrobenzene derivatives	Sigma Aldrich
Potassium carbonate	Sigma Aldrich, ≥99%
Silica gel for Column chromatography	Sigma Aldrich, 60
Glass tube	13 by 100 mm, equipped with a threaded cap
Glassware	Iso-Lab
Ultrasound bath	Cleaning bath KQ-250 DE
SEM analysis	ZEISS SIGMA
TEM analysis	Philips CM200
HRTEM	Hitachi S-5200 and Philips CM200
XRD	X-ray diffractometer operating at 40 mA, 40 kV,
DLS analysis	Horiba (SZ-100)
FT-IR analysis	Shimadzu-8400s
EDX analysis	VEGA-TESCAN-XMU
XPS analysis	K-Alpha
VSM analysis	Meghnatis Kavir Kashan Co.
NMR analysis	Varian Unity Inova 500 MHz
Melting point apparatus	Electrothermal 9100
TLC plate (silica)	Merck silica gel GF254 plates

Figure S1. VSM M-H curves of IT-functionalized Ag/Fe₃O₄ nanocatalyst and the neat Fe₃O₄ NPs (recorded at room temperature).

Figure S2. FT-IR spectrum of recovered IT-functionalized Ag/Fe₃O₄ nanocatalyst.

A sharp peak at 3500 cm⁻¹ is related to Ag NPs, a sharp peak at 2950 cm⁻¹ is related to C–H (sp3), a sharp peak at 1690 cm⁻¹ is related to C=O (present in the IT ring), a sharp peak at 1100 cm⁻¹ is related to Si–O–Si (stretching vibration), a peak at 1000 cm⁻¹ is related to Si–O (stretching vibration), a peak at 000 cm⁻¹ is related to Si–O (stretching vibration), a peak around 860 cm⁻¹ is related to SiO–H (stretching vibration), and the peak appeared at around 580 cm⁻¹ coming from Fe–O bond.

Figure S3. EDX spectrum of recovered IT-functionalized Ag/Fe₃O₄ nanocatalyst.

C: 10.6 wt%

N: 5.4 wt%

O: 20.3 wt%

Si: 0.3 wt%

S: 3.5 wt%

Fe: 14.4 wt%

Ag: 45.5 wt%

Per 100 g of catalyst, there are 0.26 mol Fe and 0.42 mol of Ag elements. It means that the molar ratio of Fe/Ag in 100 g of catalyst is: **0.61**

Figure S4. SEM image of recovered IT-functionalized Ag/Fe₃O₄ nanocatalyst.

Benzene-1,4-diamine (**Table 2 – Entry 2**): ¹H NMR (500 MHz, CDCl₃) δ 6.59 (s, 4 H), 3.36 (s, 4 H). ¹³C NMR (500 MHz, CDCl₃) δ 138.75, 116.87.

Figure S5. Spectral data and ¹H-NMR spectrum of benzene-1,4-diamine.

Figure S6. ¹³C-NMR spectrum of benzene-1,4-diamine.

Benzene-1,3-diamine (**Table 2 – Entry 3**): ¹H NMR (500 MHz, CDCl₃) δ 6.96-6.99 (m, 1 H), 6.15–6.13 (d, J = 7.8 Hz, 2 H), 6.03 (s, 1 H), 3.59 (s, 4 H). ¹³C NMR (500 MHz, CDCl₃) δ 147.78, 130.34, 106.25, 102.18.

Figure S7. Spectral data and ¹H-NMR spectrum of benzene-1,3-diamine.

Figure S8. ¹³C-NMR spectrum of benzene-1,3-diamine.

4-Aminophenol (**Table 3, Entry 6**): white solid, ¹H NMR (500 MHz, DMSO): δ(ppm) = 4.38 (2H, s, NH₂), 6.42–6.44 (2H, d, J=10 Hz, H–Ar), 6.48–6.50 (2H, d, J=10 Hz, H–Ar), 8.37 (1H, s, OH). ¹³C NMR (500 MHz, DMSO) δ 168.09, 153.70, 131.82, 113.18.

Figure S9. Spectral data and ¹H-NMR spectrum of 4-aminophenol.

Figure S10. ¹³C-NMR spectrum of 4-aminophenol.

3,4-Diaminobenzoic acid (**Table 2** – **Entry 9**): ¹H NMR (500 MHz, DMSO) δ 5.37 (s, 4H), 6.51-6.53 (d, J = 10 Hz, 1H), 7.10-7.12 (d, J = 10 Hz, 1H), 7.17 (s, 1H). ¹³C NMR (500 MHz, DMSO) δ 168.63, 140.76, 134.24, 121.09, 118.99, 116.04, 113.36.

Figure S11. Spectral data and ¹H-NMR spectrum of 3,4-diaminobenzoic acid.

Figure S12. ¹³C-NMR spectrum of 3,4-diaminobenzoic acid.