Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

In-situ self-foaming preparation of hydrophobic polyurethane foam

for oil/water separation

Leiyi Fan^{a,b}, Rui Wang^b, Qian Zhang^b, Shuaizhuo Liu^b, Ruijie He^b, Ruiyang Zhang^b, Min Shen^b, Xin Xiang^b, Ying Zhou^{a,b,*}

 ^a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
 ^b The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
 * Corresponding author. Tel: +028-83037401; Fax: +86-28-83037406; E-mail: yzhou@swpu.edu.cn

Content

Table S1 Proportion of foaming raw materials 1
Table S2 Comparison of adsorption capacity and cycle performance between various materials2
Scheme S1 Schematic diagram of in-situ foaming for preparing the polyurethane foam
Fig. S1 Schematic diagram of the molecular structure of polyether N330(a), polyether N220(b), and
polyether PTMG(c)
Fig. S2 ¹ H NMR spectrum of PU-N330
Fig. S3 ¹ H NMR spectrum of PU-N220
Fig. S4 ¹ H NMR spectrum of PU-PTMG7
Fig. S5 Pore distribution of (a) PU-N330, (b) PU-N220 and (c) PU-PTMG
Fig. S6 Absorption for static surface oil slick (a) and dynamic surface oil slick (b) over PU-PTMG9
Fig. S7 Absorption for static underwater sinking oil over PU-PTMG10
Fig. S8 Continuous separation for static surface oil slick (a) and dynamic surface oil slick (b) over
PU-PTMG11
Fig. S9 Continuous separation for emulsion (a), the comparison diagram before and after separation
over PU-PTMG (b)
Fig. S10 UV test chart of surfactant-free emulsion after separation by PU-PTMG under different
conditions
Fig. S11 UV test chart of cationic surfactant stabilized emulsion after separation by PU-PTMG
under different conditions
Fig. S12 UV test chart of anionic surfactant stabilized emulsion after separation by PU-PTMG under
different conditions
Fig. S13 UV test charts of surfactant-free emulsion (a), cationic surfactant stabilized emulsion (b),
anion surfactant stabilized emulsion (c) and the separation efficiencies of emulsions (d) by PU-N330
under different conditions
Fig. S14 UV test charts of surfactant-free emulsion (a), cationic surfactant stabilized emulsion (b),
anion surfactant stabilized emulsion (c) and the separation efficiencies of emulsions (d) by PU-N220
under different conditions
Fig. S15 Water contact angle of block polyurethane foam
References

Table S1 Proportion of foaming raw materials

Raw materials	Mass ratio (%)
Polyether polyol	100
H ₂ O	5.25
Dichloromethane	10.26
Stannous octoate	0.28
Triethylene diamine	0.32
Silicone oil (L-580)	2
Polyether additives	1

Note: Taking the mass of polyether polyol as the reference.

The dosage of toluene diisocyanate is calculated by the following formula.

$$W_{TDI} = G \times (\frac{W_{OH} \times OHV}{56.1 \times 1000} + \frac{W_{H_2O}}{9}) \times R \times \frac{1}{P}$$

Where, W_{TDI} represents the quality of toluene diisocyanate. *G* is the equivalent value of toluene diisocyanate, and the specific value is 87. W_{OH} represents the added amount of polyether polyol, *OHV* represents the hydroxyl value in polyether, W_{H20} represents the mass of water. *R* represents the use index of toluene diisocyanate, which is 1.2 in this study. *P* is the purity of toluene diisocyanate (98%).

Sample name	$Q_{\rm wt}(g g^{-1})$	Cycles	Cycle stability	Reference
Silane-f-rGONR@PU	30-68	10	97%	[1]
PU-CNT-PDA	22-34.9	150	86%	[2]
PU-TiO ₂ -GO-TDA	20.2-62.4	20	90%	[3]
ZnO-PU	33-44	95	Stable	[4]
GN-PU	28-47	100	Stable	[5]
LPU-rGO-ODA	26-68	20	Stable	[6]
PPy-PA sponge	22-62	10	Slightly lower	[7]
Pure PU foam	< 6	-	-	[8]
Mg-Al PF/PU composite	5.1-11.6	10	Stable	[8]
PU-PTMG	53.0-75.0	200	Stable	This work

 Table S2 Comparison of adsorption capacity and cycle performance between various

 materials

Scheme S1 Schematic diagram of in-situ foaming for preparing the polyurethane foam

(a)
$$CH_3$$
 (b) (c)
 $CH_2 - (OCH_2 - CH)_{n1} OH$
 CH_3 CH_3
 $CH - (OCH_2 - CH)_{n2} OH$ $H - (OCHCH_2)_n OH$ $HO - (CH_2 CH_2 CH_2 CH_2 O)_n H$
 CH_3 CH_3 $H - (OCHCH_2)_n OH$ $HO - (CH_2 CH_2 CH_2 CH_2 O)_n H$
 $CH_2 - (OCH_2 - CH)_{n3} OH$

Fig. S1 Schematic diagram of the molecular structure of polyether N330(a), polyether N220(b), and polyether PTMG(c)

Fig. S2 1H NMR spectrum of PU-N330

Fig. S3 1H NMR spectrum of PU-N220

Fig. S4 1H NMR spectrum of PU-PTMG

Fig. S5 Pore distribution of (a) PU-N330, (b) PU-N220 and (c) PU-PTMG

Fig. S6 Absorption for static surface oil slick (a) and dynamic surface oil slick (b) over PU-PTMG

Fig. S7 Absorption for static underwater sinking oil over PU-PTMG

Fig. S8 Continuous separation for static surface oil slick (a) and dynamic surface oil slick (b) over PU-PTMG

Fig. S9 Continuous separation for emulsion (a), the comparison diagram before and after separation over PU-PTMG (b)

Fig. S10 UV test chart of surfactant-free emulsion after separation by PU-PTMG under different conditions

Fig. S11 UV test chart of cationic surfactant stabilized emulsion after separation by PU-PTMG under different conditions

Fig. S12 UV test chart of anionic surfactant stabilized emulsion after separation by PU-PTMG under different conditions

Fig. S13 UV test charts of surfactant-free emulsion (a), cationic surfactant stabilized emulsion (b), anion surfactant stabilized emulsion (c) and the separation efficiencies of emulsions (d) by PU-N330 under different conditions

Fig. S14 UV test charts of surfactant-free emulsion (a), cationic surfactant stabilized emulsion (b), anion surfactant stabilized emulsion (c) and the separation efficiencies of emulsions (d) by PU-N220 under different conditions

Fig. S15 Water contact angle of block polyurethane foam

References

1 F. Qiang, L. L. Hu, L. X. Gong, L. Zhao, S. N. Li, L. C. Tang, *Chem. Eng.J.*, 2017, **334**, 2154-2166.

2 H. Y. Wang, E. Q. Wang, Z. J. Liu, D. Gao, R.X. Yuan, L. Y. Sun and Y. J. Zhu, *J. Mater. Chem. A.*, 2015, **3**, 266-273

3 Q. Wei, O. Oribayo, X. S. Feng, G. L. Rempel and Q. M. Pan, *Ind. Eng. Chem. Res.*, 2018, **57**, 8918-8926

4 B. Li, X. Liu, X. Zhang, J. Zou, W. Chai and Y. Lou, *J Chem Technol Biot*, 2015, **90**, 2106-2112

5 X. T. Zhang, D. Y. Liu, Y. L. Ma, J. Nie and G. X. Sui, *Appl. Surf. Sci.*, 2017, **422**, 116-124

6 O. Oribayo, X. S. Feng, G. L. Rempel and Q. M. Pan, *Chem. Eng.J.*, 2017, **323**, 191-202

7 M.Khosravi and S. Azizian, ACS Appl. Mater. Interfaces, 2015, 7, 25326-25333

8 T. Zhang, L. Y. Kong, M. Y. Zhang, F. X. Qiu, J. Rong and J. M. Pan, *RSC Adv.*, 2016, **6**, 86510-86519